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Local Graph Algorithms
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classic / global algorithm
see whole input, Ω(𝑛) time

output solution

local algorithm
see only small parts, 𝑜(𝑛) time
provide query access to solution
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The Local Sparse Spanning Graph Problem (LSSG)

• bounded degree graph 𝐺 = (𝑉 , 𝐸) given, 𝑉 = [𝑛]
• LSSG algorithm provides query access to a

spanning graph 𝐺′ = (𝑉 , 𝐸′): “is (7, 18) ∈ 𝐸′?”

• answer is computed on demand, no
preprocessing, all answers consistent with one 𝐺′

• local algorithm queries adjacency lists of input
e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.
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Graph Partitions

Given a graph G,
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Graph Partitions

Given a graph G, 
1. partition G into small parts

 
 
 

3. add ɛn edges between parts 
to make graph connected

 
 
2. compute spanning tree inside 
of the parts
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Voronoi Partitions
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Voronoi Partitions

1. select Θ(n2/3) random centers
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Voronoi Partitions

 
2. construct Voronoi cells 

according to path distance

1. select Θ(n2/3) random centers 
 

 
3. sort out remote vertices:
distance to center Ω(log n)

 
 

 
 
 

4. sha�er Voronoi cells into 
O(n2/3) core clusters of size O(n1/3)

summary: each core cluster has
                  • a BFS spanning tree
                  • diameter O(log n)
                  • size O(n1/3)
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Local Construction of Core Clusters

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛
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A Sublinear Tester for
Outerplanarity (& Other Forbidden
Minors) With One-Sided Error
Hendrik Fichtenberger, Reut Levi,

Yadu Vasudev, Maximilian Wötzel



Sublinear Graph Algorithms
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classic / global algorithm
see everything, Ω(𝑛) time

output solution

KarlovaKarlova
Husova
HusovaLiliov á

Liliov á

Platnéřská
Platnéřská

Husova
Husova

áprstkovaáprstkova Rytí
řs

ká

Rytí
řs

ká

Ji
ls

ká
Ji

ls
ká

Krá
lo

dv
or

sk
á

Krá
lo

dv
or

sk
á

R
ybn á

R
ybn á

CeleCele

učn
učn

T

ýn
ská

T

ýn
ská

Masná
Masná

Ma snáMa sná

Dl
ou

há
Dl

ou
há

D
ušn í

D
ušn í

Dlouhá
Dlouhá

Široká
Široká

Širok á
Širok á

Kaprova
Kaprova

Ža
tec

ká
Ža

tec
ká

Bílkova
Bílkova

Pařížská
Pařížská

Dušní
Dušní

M
ai

se
l o

v
a

M
ai

se
l o

v
a

M
a

iselova
M

a
iselova

Betlémská
Betlémská

Nekáz
Nekáz

íí

AnenskáAnenská

Panská

Panská

Na P
řík

opě

Na P
řík

opě

K
řiž

ov
ni

ck
á

K
řiž

ov
ni

ck
á

17
. l

is
to

pa
du

17
. l

is
to

pa
du JosefovJosefov

Staré MěstoStaré Město

PrahaPraha

Map data © OpenStreetMap contributors

sublinear algorithm
see only small parts, 𝑜(𝑛) time

estimate solution’s value

6



Testing Outerplanarity With One-Sided Error

    x = 0           :  accept always
    0 < x ≤ ɛdn :  don't care
ɛdn < x           :  reject w.p. 2/3

x

#   < d

Main Result
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)
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Partitioning Revisited

ɛdn
2

How about the cut in Voronoi partitions?

• number of cut edges involving a remote cluster is ≤ 𝜖𝑑𝑛/4
• number of cut edges between core clusters might be > 𝜖𝑑𝑛/4
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Construction of 𝐾2,𝑘

Theorem:  cuts of size > ƒ between clusters imply K2,k-minors
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Summary

Result: Local Spanning Graphs
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

Result: Minor-Freeness Testing
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)

recent progress by Kumar et al. (2018) for arbitrary ℱ : 𝑂(𝑛1/2+𝑜(1))
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Additional Slides



Algorithm

1. sample O(ƒ / ɛ) edges
2. for every sampled edge (u,v):
     i) explore cluster(s) of u,v
    ii) compute cut sizes between core cluster
            and remaining Voronoi cell of u,v
   iii) compute cut sizes between core / core
            cluster of u / v
3. reject i� minor found or some cut > ƒ



Super Clusters

Problem:  ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)



Super Clusters

Problem:  ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3



Super Clusters

Problem:  ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3 
2. mark each core cluster of marked cells



Super Clusters
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Super Clusters

 
 
3. join unmarked core clusters with
   marked neighboring core clusters

Problem:  ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3 
2. mark each core cluster of marked cells

☐ locally reconstructable
☐ local membership queries
☐ ƒ ⋅ #(core clusters) ⋅ #(super clusters) ∈ O(ɛdn)



Tester With Super Clusters

1. sample O(ƒ / ɛ) edges
2. for every sampled edge (u,v):
     i) explore cluster(s) of u,v
    ii) compute cut sizes between core cluster
            and remaining Voronoi cell of u,v
   iii) compute cut sizes between core / core
            and core / super cluster of u / v
3. reject i� minor found or some cut > ƒ



Remote Clusters [Elkin, Neiman, 2017]

1. each remote vertex picks random delay
2. a�er delay, start BFS: one level per time
3. construct remote clusters from BFS
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