A Centralized Local Algorithm
 for the Sparse Spanning Graph Problem
 Christoph Lenzen, Reut Levi

A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

Hendrik Fichtenberger, Reut Levi,
Yadu Vasudev, Maximilian Wötzel

A Centralized Local Algorithm for the Sparse Spanning Graph Problem

Christoph Lenzen, Reut Levi

Local Graph Algorithms

classic / global algorithm see whole input, $\Omega(n)$ time output solution

local algorithm
see only small parts, o(n) time provide query access to solution

The Local Sparse Spanning Graph Problem (LSSG)

- bounded degree graph $G=(V, E)$ given, $V=[n]$
- LSSG algorithm provides query access to a spanning graph $G^{\prime}=\left(V, E^{\prime}\right)$: "is $(7,18) \in E^{\prime}$?"

The Local Sparse Spanning Graph Problem (LSSG)

- bounded degree graph $G=(V, E)$ given, $V=[n]$
- LSSG algorithm provides query access to a spanning graph $G^{\prime}=\left(V, E^{\prime}\right)$: "is $(7,18) \in E^{\prime}$?"
- answer is computed on demand, no preprocessing, all answers consistent with one G^{\prime}

The Local Sparse Spanning Graph Problem (LSSG)

- bounded degree graph $G=(V, E)$ given, $V=[n]$
- LSSG algorithm provides query access to a spanning graph $G^{\prime}=\left(V, E^{\prime}\right)$: "is $(7,18) \in E^{\prime}$?"
- answer is computed on demand, no preprocessing, all answers consistent with one G^{\prime}
- local algorithm queries adjacency lists of input e. g., "what is the 2 nd neighbor of vertex 14 ?"

The Local Sparse Spanning Graph Problem (LSSG)

- bounded degree graph $G=(V, E)$ given, $V=[n]$
- LSSG algorithm provides query access to a spanning graph $G^{\prime}=\left(V, E^{\prime}\right)$: "is $(7,18) \in E^{\prime}$?"
- answer is computed on demand, no preprocessing, all answers consistent with one G^{\prime}
- local algorithm queries adjacency lists of input e. g., "what is the 2 nd neighbor of vertex 14 ?"

Main Result

An LSSG algorithm with query and time complexity $\tilde{O}\left(n^{2 / 3}\right) \cdot \operatorname{poly}(1 / \epsilon)$ per query. It guarantees $\left|E^{\prime}\right| \leq(1+\epsilon) n$ w.h.p.

Graph Partitions

Graph Partitions

Graph Partitions

Graph Partitions

Given a graph G,

1. partition G into small parts
2. compute spanning tree inside of the parts
3. add ε n edges between parts to make graph connected

Voronoi Partitions

Voronoi Partitions

summary: each core cluster has

- a BFS spanning tree
- diameter $\mathrm{O}(\log \mathrm{n})$
- size $O\left(n^{1 / 3}\right)$

Local Construction of Core Clusters

Local Construction of Core Clusters

Local Construction of Core Clusters

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children
complexity: $\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)$

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children
complexity: $\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)$

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children
complexity: $\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)$

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children complexity: $\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)$

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children complexity: $\mathrm{O}\left(\mathrm{n}^{1 / 3}\right)$

Not in This Talk

- Partitioning of remote vertices into remote clusters
- Joining core clusters to reduce number of cluster pairs (\approx number of edges needed to connect clusters) to εn

A Sublinear Tester for
Outerplanarity (\& Other Forbidden Minors) With One-Sided Error
Hendrik Fichtenberger, Reut Levi,
Yadu Vasudev, Maximilian Wötzel

Sublinear Graph Algorithms

sublinear algorithm

see only small parts, o(n) time estimate solution's value

Testing Outerplanarity With One-Sided Error

Testing Outerplanarity With One-Sided Error

Testing Outerplanarity With One-Sided Error

Main Result

An \mathscr{F}-minor freeness tester for every family \mathscr{F} of forbidden minors that contains either the $K_{2, k},(k \times 2)$-grid or k-circus graph with query complexity / running time $\tilde{O}\left(n^{2 / 3} / \epsilon^{5}\right)$

Partitioning Revisited

How about the cut in Voronoi partitions?

- number of cut edges involving a remote cluster is $\leq \epsilon d n / 4$
- number of cut edges between core clusters might be $>\epsilon d n / 4$

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

idea:

always have BFS tree, enforce more structure by large cut size
$f \approx \Theta(d k \log (n))$

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

> idea:
> always have BFS tree, enforce more structure by large cut size
> $f \approx \Theta(d k \log (n))$

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

idea:

always have BFS tree, enforce more structure by large cut size

$$
f \approx \Theta(d k \log (n))
$$

at most d incident edges per vertex

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

idea:

always have BFS tree, enforce more structure by large cut size
$(k+1) \cdot \log (n)$ cut vertices on left side at most d incident edges per vertex

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

idea:

always have BFS tree, enforce more structure by large cut size
$(k+1) \cdot \log (n)$ cut vertices on left side

$$
f \approx \Theta(d k \log (n))
$$

at most d incident edges per vertex

Construction of $K_{2, k}$

Theorem: cuts of size $>f$ between clusters imply $K_{2, k}$-minors

idea:
always have BFS tree, enforce more structure by large cut size
$(k+1) \cdot \log (n)$ cut vertices on left side

$$
f \approx \Theta(d k \log (n))
$$

at most d incident edges per vertex

Summary

Result: Local Spanning Graphs

An LSSG algorithm with query and time complexity
$\tilde{O}\left(n^{2 / 3}\right) \cdot \operatorname{poly}(1 / \epsilon)$ per query. It guarantees $\left|E^{\prime}\right| \leq(1+\epsilon) n$ w.h.p.

Result: Minor-Freeness Testing

An \mathscr{F}-minor freeness tester for every family \mathscr{F} of forbidden minors that contains either the $K_{2, k},(k \times 2)$-grid or k-circus graph with query complexity / running time $\tilde{O}\left(n^{2 / 3} / \epsilon^{5}\right)$
recent progress by Kumar et al. (2018) for arbitrary $\mathscr{F}: O\left(n^{1 / 2+o(1)}\right)$

Additional Slides

Algorithm

1. sample $O(f / \varepsilon)$ edges
2. for every sampled edge (u,v):
i) explore cluster(s) of u, v
ii) compute cut sizes between core cluster and remaining Voronoi cell of u, v
iii) compute cut sizes between core / core cluster of u / v
3. reject iff minor found or some cut $>f$

Super Clusters

Problem: $f \cdot \#($ core clusters $) \notin \mathrm{O}(\varepsilon \mathrm{dn})$

Super Clusters

$$
\text { Problem: } f \cdot \#(\text { core clusters })^{2} \notin \mathrm{O}(\varepsilon \mathrm{dn})
$$

1. max ${ }^{\boldsymbol{x}} \mathrm{k}$ each Voronoi cell w.p. $1 / \mathrm{n}^{1 / 3}$

Super Clusters

$$
\text { Problem: } f \cdot \#(\text { core clusters })^{2} \notin \mathrm{O}(\varepsilon \mathrm{dn})
$$

1. mark each Voronoi cellw.p. $1 / \mathrm{n}^{1 / 3}$ 2. maxrk each core cluster of marked cells

Super Clusters

$$
\text { Problem: } f \cdot \#(\text { core clusters })^{2} \notin \mathrm{O}(\varepsilon \mathrm{dn})
$$

1. mark each Voronoi cell w.p. $1 / n^{1 / 3}$
2. mârk each core cluster of marked cells
3. join unmarked core clusters with marked neighboring core clusters

Super Clusters

$$
\text { Problem: } f \cdot \#(\text { core clusters })^{2} \notin \mathrm{O}(\varepsilon d n)
$$

1. mark each Voronoi cell w.p. $1 / \mathrm{n}^{1 / 3}$ 2. mârk each core cluster of marked cells
2. join unmarked core clusters with marked neighboring core clusters

W-locally reconstructable

\square local membership queries
$\Delta f \cdot \#($ core clusters $) \cdot \#($ super clusters $) \in \mathrm{O}(\varepsilon \mathrm{dn})$

Tester With Super Clusters

1. sample $O(f / \varepsilon)$ edges
2. for every sampled edge (u,v):
i) explore cluster(s) of u, v

ii) compute cut sizes between core cluster and remaining Voronoi cell of u, v
iii) compute cut sizes between core / core and core / super cluster of u / v
3. reject iff minor found or some cut $>f$

Remote Clusters [Elkin, Neiman, 2017]

1. each remote vertex picks random delay 2. after delay, start BFS: one level per time
2. construct remote clusters from BFS
