
A Centralized Local Algorithm
for the Sparse Spanning Graph Problem

Christoph Lenzen, Reut Levi

A Sublinear Tester for Outerplanarity
(and Other Forbidden Minors) With One-Sided Error

Hendrik Fichtenberger, Reut Levi,
Yadu Vasudev, Maximilian Wötzel

A Centralized Local Algorithm for
the Sparse Spanning Graph Problem
Christoph Lenzen, Reut Levi

Local Graph Algorithms

KarlovaKarlova

Husova
HusovaLiliov á

Liliov á

Platnéřská
Platnéřská

Husova
Husova

áprstkovaáprstkova Rytí
řs

ká

Rytí
řs

ká

Ji
ls

ká
Ji

ls
ká

Krá
lo

dv
or

sk
á

Krá
lo

dv
or

sk
á

R
ybn á

R
ybn á

CeleCele

učn
učn

T

ýn
ská

T

ýn
ská

Masná
Masná

Ma snáMa sná

Dl
ou

há
Dl

ou
há

D
ušn í

D
ušn í

Dlouhá
Dlouhá

Široká
Široká

Širok á
Širok á

Kaprova
Kaprova

Ža
tec

ká
Ža

tec
ká

Bílkova
Bílkova

Pařížská
Pařížská

Dušní
Dušní

M
ai

se
l o

v
a

M
ai

se
l o

v
a

M
a

iselova
M

a
iselova

Betlémská
Betlémská

Nekáz
Nekáz

íí

AnenskáAnenská

Panská

Panská

Na P
řík

opě

Na P
řík

opě

K
řiž

ov
ni

ck
á

K
řiž

ov
ni

ck
á

17
. l

is
to

pa
du

17
. l

is
to

pa
du JosefovJosefov

Staré MěstoStaré Město

PrahaPraha

Map data © OpenStreetMap contributors

classic / global algorithm
see whole input, Ω(𝑛) time

output solution

local algorithm
see only small parts, 𝑜(𝑛) time
provide query access to solution

1

The Local Sparse Spanning Graph Problem (LSSG)

• bounded degree graph 𝐺 = (𝑉 , 𝐸) given, 𝑉 = [𝑛]
• LSSG algorithm provides query access to a

spanning graph 𝐺′ = (𝑉 , 𝐸′): “is (7, 18) ∈ 𝐸′?”

• answer is computed on demand, no
preprocessing, all answers consistent with one 𝐺′

• local algorithm queries adjacency lists of input
e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

2

The Local Sparse Spanning Graph Problem (LSSG)

• bounded degree graph 𝐺 = (𝑉 , 𝐸) given, 𝑉 = [𝑛]
• LSSG algorithm provides query access to a

spanning graph 𝐺′ = (𝑉 , 𝐸′): “is (7, 18) ∈ 𝐸′?”
• answer is computed on demand, no

preprocessing, all answers consistent with one 𝐺′

• local algorithm queries adjacency lists of input
e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

2

The Local Sparse Spanning Graph Problem (LSSG)

• bounded degree graph 𝐺 = (𝑉 , 𝐸) given, 𝑉 = [𝑛]
• LSSG algorithm provides query access to a

spanning graph 𝐺′ = (𝑉 , 𝐸′): “is (7, 18) ∈ 𝐸′?”
• answer is computed on demand, no

preprocessing, all answers consistent with one 𝐺′

• local algorithm queries adjacency lists of input
e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

2

The Local Sparse Spanning Graph Problem (LSSG)

• bounded degree graph 𝐺 = (𝑉 , 𝐸) given, 𝑉 = [𝑛]
• LSSG algorithm provides query access to a

spanning graph 𝐺′ = (𝑉 , 𝐸′): “is (7, 18) ∈ 𝐸′?”
• answer is computed on demand, no

preprocessing, all answers consistent with one 𝐺′

• local algorithm queries adjacency lists of input
e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

2

Graph Partitions

Given a graph G,

3

Graph Partitions

Given a graph G,
1. partition G into small parts

3

Graph Partitions

Given a graph G,
1. partition G into small parts

2. compute spanning tree inside
of the parts

3

Graph Partitions

Given a graph G,
1. partition G into small parts

3. add ɛn edges between parts
to make graph connected

2. compute spanning tree inside
of the parts

3

Voronoi Partitions

4

Voronoi Partitions

1. select Θ(n2/3) random centers

4

Voronoi Partitions

2. construct Voronoi cells

according to path distance

1. select Θ(n2/3) random centers

4

Voronoi Partitions

2. construct Voronoi cells

according to path distance

1. select Θ(n2/3) random centers

3. sort out remote vertices:
distance to center Ω(log n)

4

Voronoi Partitions

2. construct Voronoi cells

according to path distance

1. select Θ(n2/3) random centers

3. sort out remote vertices:
distance to center Ω(log n)

4. sha�er Voronoi cells into
O(n2/3) core clusters of size O(n1/3)

4

Voronoi Partitions

2. construct Voronoi cells

according to path distance

1. select Θ(n2/3) random centers

3. sort out remote vertices:
distance to center Ω(log n)

4. sha�er Voronoi cells into
O(n2/3) core clusters of size O(n1/3)

summary: each core cluster has
 • a BFS spanning tree
 • diameter O(log n)
 • size O(n1/3)

4

Local Construction of Core Clusters

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

1. each vertex �lips a coin

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

3. cut heavy children
complexity: O(n1/3)

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

3. cut heavy children
complexity: O(n1/3)

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

3. cut heavy children
complexity: O(n1/3)

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

3. cut heavy children
complexity: O(n1/3)

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

Local Construction of Core Clusters

2. BFS exploration
1. each vertex �lips a coin

3. cut heavy children
complexity: O(n1/3)

Not in This Talk

• Partitioning of remote vertices into remote clusters

• Joining core clusters to reduce number of cluster pairs
(≈ number of edges needed to connect clusters) to 𝜀𝑛

5

A Sublinear Tester for
Outerplanarity (& Other Forbidden
Minors) With One-Sided Error
Hendrik Fichtenberger, Reut Levi,

Yadu Vasudev, Maximilian Wötzel

Sublinear Graph Algorithms

KarlovaKarlova

Husova
HusovaLiliov á

Liliov á

Platnéřská
Platnéřská

Husova
Husova

áprstkovaáprstkova Rytí
řs

ká

Rytí
řs

ká

Ji
ls

ká
Ji

ls
ká

Krá
lo

dv
or

sk
á

Krá
lo

dv
or

sk
á

R
ybn á

R
ybn á

CeleCele

učn
učn

T

ýn
ská

T

ýn
ská

Masná
Masná

Ma snáMa sná

Dl
ou

há
Dl

ou
há

D
ušn í

D
ušn í

Dlouhá
Dlouhá

Široká
Široká

Širok á
Širok á

Kaprova
Kaprova

Ža
tec

ká
Ža

tec
ká

Bílkova
Bílkova

Pařížská
Pařížská

Dušní
Dušní

M
ai

se
l o

v
a

M
ai

se
l o

v
a

M
a

iselova
M

a
iselova

Betlémská
Betlémská

Nekáz
Nekáz

íí

AnenskáAnenská

Panská

Panská

Na P
řík

opě

Na P
řík

opě

K
řiž

ov
ni

ck
á

K
řiž

ov
ni

ck
á

17
. l

is
to

pa
du

17
. l

is
to

pa
du JosefovJosefov

Staré MěstoStaré Město

PrahaPraha

Map data © OpenStreetMap contributors

classic / global algorithm
see everything, Ω(𝑛) time

output solution

KarlovaKarlova
Husova
HusovaLiliov á

Liliov á

Platnéřská
Platnéřská

Husova
Husova

áprstkovaáprstkova Rytí
řs

ká

Rytí
řs

ká

Ji
ls

ká
Ji

ls
ká

Krá
lo

dv
or

sk
á

Krá
lo

dv
or

sk
á

R
ybn á

R
ybn á

CeleCele

učn
učn

T

ýn
ská

T

ýn
ská

Masná
Masná

Ma snáMa sná

Dl
ou

há
Dl

ou
há

D
ušn í

D
ušn í

Dlouhá
Dlouhá

Široká
Široká

Širok á
Širok á

Kaprova
Kaprova

Ža
tec

ká
Ža

tec
ká

Bílkova
Bílkova

Pařížská
Pařížská

Dušní
Dušní

M
ai

se
l o

v
a

M
ai

se
l o

v
a

M
a

iselova
M

a
iselova

Betlémská
Betlémská

Nekáz
Nekáz

íí

AnenskáAnenská

Panská

Panská

Na P
řík

opě

Na P
řík

opě

K
řiž

ov
ni

ck
á

K
řiž

ov
ni

ck
á

17
. l

is
to

pa
du

17
. l

is
to

pa
du JosefovJosefov

Staré MěstoStaré Město

PrahaPraha

Map data © OpenStreetMap contributors

sublinear algorithm
see only small parts, 𝑜(𝑛) time

estimate solution’s value

6

Testing Outerplanarity With One-Sided Error

 x = 0 : accept always
 0 < x ≤ ɛdn : don't care
ɛdn < x : reject w.p. 2/3

x

< d

Main Result
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)

7

Testing Outerplanarity With One-Sided Error

 x = 0 : accept always
 0 < x ≤ ɛdn : don't care
ɛdn < x : reject w.p. 2/3

x

ɛ-far
ɛ-close# < d

Main Result
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)

7

Testing Outerplanarity With One-Sided Error

 x = 0 : accept always
 0 < x ≤ ɛdn : don't care
ɛdn < x : reject w.p. 2/3

x

ɛ-far
ɛ-close# < d

Main Result
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)

7

Partitioning Revisited

ɛdn
2

How about the cut in Voronoi partitions?

• number of cut edges involving a remote cluster is ≤ 𝜖𝑑𝑛/4
• number of cut edges between core clusters might be > 𝜖𝑑𝑛/4

8

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

at most d incident
edges per vertex

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

at most d incident
edges per vertex

(k+1) ⋅ log(n) cut vertices on le� side

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

at most d incident
edges per vertex

(k+1) ⋅ log(n) cut vertices on le� side

log(n) forces branching

O(log n)

9

Construction of 𝐾2,𝑘

Theorem: cuts of size > ƒ between clusters imply K2,k-minors

idea:
always have BFS tree,
enforce more structure

by large cut size

ƒ ≈ Θ(d k log(n))

at most d incident
edges per vertex

(k+1) ⋅ log(n) cut vertices on le� side

log(n) forces branching

O(log n)

9

Summary

Result: Local Spanning Graphs
An LSSG algorithm with query and time complexity
�̃�(𝑛2/3) ⋅ poly(1/𝜖) per query. It guarantees |𝐸′| ≤ (1 + 𝜖)𝑛 w.h.p.

Result: Minor-Freeness Testing
An ℱ -minor freeness tester for every family ℱ of forbidden
minors that contains either the 𝐾2,𝑘 , (𝑘 × 2)-grid or 𝑘-circus graph
with query complexity / running time �̃�(𝑛2/3/𝜖5)

recent progress by Kumar et al. (2018) for arbitrary ℱ : 𝑂(𝑛1/2+𝑜(1))

10

Additional Slides

Algorithm

1. sample O(ƒ / ɛ) edges
2. for every sampled edge (u,v):
 i) explore cluster(s) of u,v
 ii) compute cut sizes between core cluster
 and remaining Voronoi cell of u,v
 iii) compute cut sizes between core / core
 cluster of u / v
3. reject i� minor found or some cut > ƒ

Super Clusters

Problem: ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

Super Clusters

Problem: ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3

Super Clusters

Problem: ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3
2. mark each core cluster of marked cells

Super Clusters

3. join unmarked core clusters with
 marked neighboring core clusters

Problem: ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3
2. mark each core cluster of marked cells

Super Clusters

3. join unmarked core clusters with
 marked neighboring core clusters

Problem: ƒ ⋅ #(core clusters)2 ∉ O(ɛdn)

1. mark each Voronoi cell w.p. 1/n1/3
2. mark each core cluster of marked cells

☐ locally reconstructable
☐ local membership queries
☐ ƒ ⋅ #(core clusters) ⋅ #(super clusters) ∈ O(ɛdn)

Tester With Super Clusters

1. sample O(ƒ / ɛ) edges
2. for every sampled edge (u,v):
 i) explore cluster(s) of u,v
 ii) compute cut sizes between core cluster
 and remaining Voronoi cell of u,v
 iii) compute cut sizes between core / core
 and core / super cluster of u / v
3. reject i� minor found or some cut > ƒ

Remote Clusters [Elkin, Neiman, 2017]

1. each remote vertex picks random delay
2. a�er delay, start BFS: one level per time
3. construct remote clusters from BFS

	A Centralized Local Algorithm for the Sparse Spanning Graph Problem Christoph Lenzen, Reut Levi
	A Sublinear Tester for Outerplanarity (& Other Forbidden Minors) With One-Sided Error Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, Maximilian Wötzel
	Appendix
	Additional Slides

