Sampling Arbitrary Subgraphs Exactly Uniformly in Sublinear Time

Hendrik Fichtenberger, Mingze Gao and Pan Peng
ICALP 2020

Subgraph Problems

subgraph problems are basic but popular:

Subgraph Problems

subgraph problems are basic but popular:

in this talk: sampling subgraphs in sublinear time

Subgraph Problems

subgraph problems are basic but popular:

in this talk: sampling subgraphs in sublinear time

fixed subgraph
uniformly from
an input graph

Subgraph Problems

subgraph problems are basic but popular:

in this talk: sampling subgraphs in sublinear time

\[

\]

Graph Models

query for uniformly random vertex

Graph Models

query for uniformly random vertex

given a vertex, query for its i-th neighbor

Graph Models

query for uniformly random vertex

given a vertex, query for its i-th neighbor
given two vertices, query if they are adjacent

Graph Models

query for uniformly random vertex
given a vertex, query for its i-th neighbor given two vertices, query if they are adjacent

Graph Models

query for uniformly random vertex
given a vertex, query for its i-th neighbor given two vertices, query if they are adjacent

query for uniformly random edge

Graph Models

query for uniformly random vertex
given a vertex, query for its i-th neighbor
given two vertices, query if they are adjacent general model

query for uniformly random edge

Simple Algorithm for the Augmented General Model

repeat until success:

H

Simple Algorithm for the Augmented General Model

repeat until success:

1. sample $|E(H)|$ edges uniformly at random
2. check wether they form a copy of H

H

Simple Algorithm for the Augmented General Model

repeat until success:

1. sample $|E(H)|$ edges uniformly at random
2. check wether they form a copy of H

H

Simple Algorithm for the Augmented General Model

repeat until success:

1. sample $|E(H)|$ edges uniformly at random
2. check wether they form a copy of H complexity:

- probability to sample a fixed copy of $H: \Theta\left(\frac{1}{m^{E(H) \mid}}\right)$
- expected running time: $\Theta\left(\frac{m^{|E(H)|}}{\# H}\right)$

Simple Algorithm for the Augmented General Model

repeat until success:

1. sample $|E(H)|$ edges uniformly at random
2. check wether they form a copy of H complexity:

- probability to sample a fixed copy of $H: \Theta\left(\frac{1}{m^{E(H) \mid}}\right)$
- expected running time: $\Theta\left(\frac{m^{[E(H) \mid}}{\# H}\right)$
can we do better?

Related Work ${ }^{1}$

improvements over linear query bounds in $\tilde{O}(\ldots)$, all essentially tight for cliques $\begin{array}{llll}\text { subgraph } H & \text { approximate } & \text { sampling approx. } & \text { sampling exactly } \\ & \text { counting } & \text { uniformly } & \text { uniformly }\end{array}$

00

any

[^0]
Related Work ${ }^{1}$

improvements over linear query bounds in $\tilde{O}(\ldots)$, all essentially tight for cliques
subgraph H

any
sampling approx. sampling exactly uniformly uniformly

$$
\frac{n}{(\# H)^{1 / H]}}+\frac{m^{\rho(H)}}{\# H}[\text { ERS18 }]
$$

general model

 $\rho(H)$ is the frac. edge cover size of $H,|H| / 2 \leq \rho(H) \leq|H|$[^1]
Related Work ${ }^{1}$

improvements over linear query bounds in $\tilde{O}(\ldots)$, all essentially tight for cliques

$$
\text { subgraph } H
$$

any
sampling approx. sampling exactly uniformly uniformly

$$
\frac{n}{\sqrt{m}} \text { [ER18] }
$$

$\frac{n}{(\# H)^{1 /[H]}}+\frac{m^{\rho(H)}}{\# H}[$ ERS18 $]$

general model

 $\rho(H)$ is the frac. edge cover size of $H,|H| / 2 \leq \rho(H) \leq|H|$[^2]
Related Work ${ }^{1}$

improvements over linear query bounds in $\tilde{O}(\ldots)$, all essentially tight for cliques
subgraph H
approximate counting
$\frac{n}{\sqrt{m}}$ [GR08] $\frac{n}{(\# H)^{1 /[H]}}+\frac{m^{\rho(H)}}{\# H}[$ ERS18 $]$ $\frac{m^{\rho(H)}}{\# H}$ [AKK18]
general model / augmented general model $\rho(H)$ is the frac. edge cover size of $H,|H| / 2 \leq \rho(H) \leq|H|$

[^3]
Our Results

Main Theorem

For any subgraph H, sampling exactly uniformly from all copies of H in an input graph G has expected query and time complexity $\mathcal{O}\left(\frac{m^{\rho(H)}}{\# H}\right)$ in the augmented general model.

This is essentially tight for cliques, even when we require only almost uniform sampling.

Fractional Edge Covers

Theorem [AKK18] ${ }^{2}$

For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

[^4]
Fractional Edge Covers

Theorem [AKK18] ${ }^{2}$

For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

The value $\psi_{H}(C)$ of a cover C is

$$
\psi_{H}(C)=\sum_{\substack{k \in\{3,5, \ldots\} \\ C_{k} \in C}} \frac{k}{2}+\sum_{\substack{k \in \mathbb{N} \\ S_{k} \in C}} k
$$

[^5]
Fractional Edge Covers

Theorem [AKK18] ${ }^{2}$

For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

The value $\psi_{H}(C)$ of a cover C is

$$
\psi_{H}(C)=\sum_{\substack{k \in\{3,5, \ldots\}\} \\ C_{k} \in C}} \frac{k}{2}+\sum_{\substack{k \in \mathbb{N} \\ S_{k} \in C}} k .
$$

We define $\rho(H)=\min _{C} \psi_{H}(C)$.

[^6]
Sampling in the Augmented General Model

for subgraph H and input G :

H

$$
\rho(H)=5
$$

G

Sampling in the Augmented General Model

for subgraph H and input G :

1. compute edge cover of H

H

$$
\rho(H)=5
$$

G

Sampling in the Augmented General Model

for subgraph H and input G :

1. compute edge cover of H
2. sample $\rho(H)$ edges from G

H

G

$$
\rho(H)=5
$$

Sampling in the Augmented General Model

for subgraph H and input G :

1. compute edge cover of H
2. sample $\rho(H)$ edges from G
3. use pair queries to check for copy of H

H

G

$$
\rho(H)=5
$$

Sampling in the Augmented General Model

for subgraph H and input G :

1. compute edge cover of H
2. sample $\rho(H)$ edges from G
3. use pair queries to check for copy of H
probability to find fixed $H: \Theta\left(\frac{1}{m^{\rho(H)}}\right)$

H

G
expected time to find it: $\Theta\left(m^{\rho(H)}\right) \quad \rho(H)=5$

How About Odd Cycles?

How About Odd Cycles?

How About Odd Cycles?

for odd cycles $C_{k}: \rho\left(C_{k}\right)=\frac{k}{2}$ how to sample $\frac{k}{2}$ edges?

for odd cycles C_{k} :

How About Odd Cycles?

for odd cycles C_{k} :

1. sample $\frac{k-1}{2}$ edges

How About Odd Cycles?

for odd cycles C_{k} :

1. sample $\frac{k-1}{2}$ edges
2. sample a common neighbor of u and v

How About Odd Cycles?

for odd cycles C_{k} :

1. sample $\frac{k-1}{2}$ edges
2. sample a common neighbor of u and v
neighbor query probability: $\operatorname{Pr}[w]=\frac{1}{d_{v}}$ target probability: $\operatorname{Pr}[w]=\Theta\left(\frac{1}{\sqrt{m}}\right)$
for all $w \in \Gamma(u) \cap \Gamma(v)$

How About Odd Cycles?

for odd cycles C_{k} :

1. sample $\frac{k-1}{2}$ edges
2. sample a common neighbor of u and v
neighbor query probability: $\operatorname{Pr}[w]=\frac{1}{d_{v}}$ target probability: $\operatorname{Pr}[w]=\Theta\left(\frac{1}{\sqrt{m}}\right)$
for all $w \in \Gamma(u) \cap \Gamma(v)$
total probability to sample a fixed $H: \Theta\left(\frac{1}{m^{(k-1) / 2}} \cdot \frac{1}{\sqrt{m}}\right)=\Theta\left(\frac{1}{m^{\rho\left(C_{k}\right)}}\right)$

Rejection Sampling

Problem

Given samples from distribution \vec{p} on $[n]$, simulate sampling from \vec{q}.

Rejection Sampling

Problem

Given samples from distribution \vec{p} on $[n]$, simulate sampling from \vec{q}.

1. scale \vec{p} linearly by factor

$$
s=\max _{i} \vec{q}(i) / \vec{p}(i)
$$

Rejection Sampling

Problem

Given samples from distribution \vec{p} on $[n]$, simulate sampling from \vec{q}.

1. scale \vec{p} linearly by factor

$$
s=\max _{i} \vec{q}(i) / \vec{p}(i)
$$

Rejection Sampling

Problem

Given samples from distribution \vec{p} on $[n]$, simulate sampling from \vec{q}.

1. scale \vec{p} linearly by factor

$$
s=\max _{i} \vec{q}(i) / \vec{p}(i)
$$

2. sample o from \vec{p}
3. sample x uniformly from $[0,1]$
4. accept o if $x \leq \vec{q}(o) /(s \vec{p}(o))$, reject and repeat otherwise

Algorithm

1. decompose H into odd cycles C and stars S
2. repeat until success:
a. sample edges from G as described
b. check whether they form a copy of H using pair queries

sample H exactly uniformly in $\mathcal{O}\left(\frac{m^{\rho(H)}}{\# H}\right)$ expected time

[^0]: ${ }^{1}$ Goldreich, Ron, RS\&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

[^1]: ${ }^{1}$ Goldreich, Ron, RS\&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

[^2]: ${ }^{1}$ Goldreich, Ron, RS\&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

[^3]: ${ }^{1}$ Goldreich, Ron, RS\&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18;
 Assadi, Kapralov, Khanna, ITCS'18

[^4]: ${ }^{2}$ Assadi, Kapralov, Khann, ITCS'18

[^5]: ${ }^{2}$ Assadi, Kapralov, Khann, ITCS'18

[^6]: ${ }^{2}$ Assadi, Kapralov, Khann, ITCS'18

