
Distributed Testing of Conductance

Hendrik Fichtenberger, Yadu Vasudev
August 31, 2018

Sublinear Graph Algorithms

Map data © OpenStreetMap contributors

classic / global algorithm
see everything
complexity Ω(n)
output solution

Map data © OpenStreetMap contributors

sublinear algorithm
see only small parts
complexity o(n)

estimate solution’s value

1

Sublinear Graph Algorithms

Map data © OpenStreetMap contributors

classic / global algorithm
see everything
complexity Ω(n)
output solution

Map data © OpenStreetMap contributors

sublinear algorithm
see only small parts
complexity o(n)

estimate solution’s value

1

Property Testing

Given a graph G = (V, E), decide with prob. ≥ 2/3

C3-free
accept

ε-close to C3-free
don’t care

ε-far from C3-free
reject

distance “ε-far from” = need to modify more than ε|E| edges

2

Distributed Property Testing in the CONGEST model

• input graph G = (V, E)
• each vertex has id ∈ poly(n)
• processor on each vertex v ∈ V

• synchronized rounds
one round for vertex v ∈ V :
1. unlimited local computation
2. ∀u ∈ Γ(v): send O(log n) bits to u
3. ∀u ∈ Γ(v): receive message from u

• after last round
• every vertex votes accept or reject
• tester rejects iff at least one vertex
votes reject

• complexity measure: #rounds

3

Distributed Property Testing in the CONGEST model

• input graph G = (V, E)
• each vertex has id ∈ poly(n)
• processor on each vertex v ∈ V
• synchronized rounds
one round for vertex v ∈ V :
1. unlimited local computation
2. ∀u ∈ Γ(v): send O(log n) bits to u
3. ∀u ∈ Γ(v): receive message from u

• after last round
• every vertex votes accept or reject
• tester rejects iff at least one vertex
votes reject

• complexity measure: #rounds

3

Distributed Property Testing in the CONGEST model

• input graph G = (V, E)
• each vertex has id ∈ poly(n)
• processor on each vertex v ∈ V
• synchronized rounds
one round for vertex v ∈ V :
1. unlimited local computation
2. ∀u ∈ Γ(v): send O(log n) bits to u
3. ∀u ∈ Γ(v): receive message from u

• after last round
• every vertex votes accept or reject
• tester rejects iff at least one vertex
votes reject

• complexity measure: #rounds

3

Distributed Property Testing in the CONGEST model

• input graph G = (V, E)
• each vertex has id ∈ poly(n)
• processor on each vertex v ∈ V
• synchronized rounds
one round for vertex v ∈ V :
1. unlimited local computation
2. ∀u ∈ Γ(v): send O(log n) bits to u
3. ∀u ∈ Γ(v): receive message from u

• after last round
• every vertex votes accept or reject
• tester rejects iff at least one vertex
votes reject

• complexity measure: #rounds

3

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance In Pictures

4

Conductance More Formally

For S ⊆ V , Φ(S) = |E(S, V \ S)|
|(S× V) ∩ E|

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)

5

Conductance More Formally

For S ⊆ V ,

Φ(S) = |E(S, V \ S)|
|(S× V) ∩ E|

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)

5

Conductance More Formally

For S ⊆ V , Φ(S) = |E(S, V \ S)|
|(S× V) ∩ E|

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)

5

Conductance More Formally

For S ⊆ V , Φ(S) = |E(S, V \ S)|
|(S× V) ∩ E|

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)

5

Conductance More Formally

For S ⊆ V , Φ(S) = |E(S, V \ S)|
|(S× V) ∩ E|

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)

5

Testing of Conductance

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O(log n

εΦ2), and a lower bound of Ω(log n).

• tester works also for connected graphs of unknown size
• votes can be made all accept / all reject

6

Testing of Conductance

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O(log n

εΦ2), and a lower bound of Ω(log n).

• tester works also for connected graphs of unknown size
• votes can be made all accept / all reject

6

Lazy Random Walks

• random walker starts on s ∈ V

• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Lazy Random Walks

• random walker starts on s ∈ V
• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0

7

Idea of the Algorithm

idea test for vertices with large mixing time

algorithm 1. sample Θ(1/ε) vertices S
2. perform poly(n) random walks from S
3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S
3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S

3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S

3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S

3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S
3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits

8

Idea of the Algorithm

idea test for vertices with large mixing time
algorithm 1. sample Θ(1/ε) vertices S

2. perform poly(n) random walks from S
3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits
8

Reducing Congestion

1. attempt: transmit full traces

can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens

requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S

but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens

requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens

requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens

requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens
requires only O(log n) rounds

but approx. ‖Pt 1|S|
∑

s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens
requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens
requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens
requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices
can approximate ‖Pt~1s − π‖ ∀s ∈ S

requires only O(log n) rounds

9

Reducing Congestion

1. attempt: transmit full traces
can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens
requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices
can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds

9

Summary

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O(log n

εΦ2), and a lower bound of Ω(log n).

• lower bound is based on high girth expander graphs

• first two-sided error distributed tester
• voting rule taken from one-sided error testing
• power of other rules?

• lower bound for one-sided error tester of conductance?

10

Summary

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O(log n

εΦ2), and a lower bound of Ω(log n).

• lower bound is based on high girth expander graphs
• first two-sided error distributed tester

• voting rule taken from one-sided error testing
• power of other rules?

• lower bound for one-sided error tester of conductance?

10

Summary

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O(log n

εΦ2), and a lower bound of Ω(log n).

• lower bound is based on high girth expander graphs
• first two-sided error distributed tester

• voting rule taken from one-sided error testing
• power of other rules?

• lower bound for one-sided error tester of conductance?

10

