Distributed Testing of Conductance

Hendrik Fichtenberger, Yadu Vasudev
August 31, 2018

Sublinear Graph Algorithms

classic / global algorithm
see everything
complexity $\Omega(n)$
output solution

Sublinear Graph Algorithms

classic / global algorithm

 see everything complexity $\Omega(n)$ output solution

sublinear algorithm

see only small parts complexity o(n)
estimate solution's value

Property Testing

Given a graph $G=(V, E)$, decide with prob. $\geq 2 / 3$

distance " ϵ-far from" = need to modify more than $\epsilon|E|$ edges

Distributed Property Testing in the CONGEST model

- input graph $G=(V, E)$
- each vertex has id $\in \operatorname{poly}(n)$
- processor on each vertex $v \in V$

Distributed Property Testing in the CONGEST model

- input graph $G=(V, E)$
- each vertex has id $\in \operatorname{poly}(n)$
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:

1. unlimited local computation
2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
3. $\forall u \in \Gamma(v)$: receive message from u

Distributed Property Testing in the CONGEST model

- input graph $G=(V, E)$
- each vertex has id $\in \operatorname{poly}(n)$
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:

1. unlimited local computation
2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
3. $\forall u \in \Gamma(v)$: receive message from u

- after last round
- every vertex votes accept or reject
- tester rejects iff at least one vertex votes reject

Distributed Property Testing in the CONGEST model

- input graph $G=(V, E)$
- each vertex has id $\in \operatorname{poly}(n)$
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:

1. unlimited local computation
2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
3. $\forall u \in \Gamma(v)$: receive message from u

- after last round
- every vertex votes accept or reject
- tester rejects iff at least one vertex votes reject
- complexity measure: \#rounds

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance In Pictures

Conductance More Formally

Conductance More Formally

For $S \subseteq V$,

Conductance More Formally

$$
\text { For } S \subseteq V \bullet, \Phi(S)=\frac{|E(S, V \backslash S)| \bullet}{|(S \times V) \cap E| \bullet \bullet}
$$

Conductance More Formally

$$
\text { For } S \subseteq V \bullet, \Phi(S)=\frac{|E(S, V \backslash S)| \bullet}{|(S \times V) \cap E| \bullet \bullet}
$$

$\phi(5)=1 / 2$

Conductance More Formally

$$
\text { For } \begin{aligned}
S \subseteq V \odot, \Phi(S) & =\frac{|E(S, V \backslash S)|}{|(S \times V) \cap E| \odot \bigcirc} \\
\Phi(G) & =\min _{\mid E \subset V}^{|E(S, S)| \leq|E(\bar{S}, \bar{S})|}
\end{aligned} \Phi(S)
$$

$\phi(5)=1 / 2$

Testing of Conductance

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O\left(\frac{\log n}{\Phi^{2}}\right)$, and a lower bound of $\Omega(\log n)$.

Testing of Conductance

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O\left(\frac{\log n}{\epsilon \Phi^{2}}\right)$, and a lower bound of $\Omega(\log n)$.

- tester works also for connected graphs of unknown size
- votes can be made all accept / all reject

Lazy Random Walks

- random walker starts on $s \in V$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

- stationary distribution

$$
\overrightarrow{\boldsymbol{\pi}}_{v}=d(v) /(2 m)
$$

Lazy Random Walks

- random walker starts on $s \in V$
- goes $u \rightarrow v, v \in \Gamma(u)$ with probability

$$
p(v, u)= \begin{cases}\frac{1}{2 d(u)} & \text { if } u \neq v \\ \frac{1}{2} & \text { if } u=v\end{cases}
$$

- stationary distribution

$$
\overrightarrow{\boldsymbol{\pi}}_{v}=d(v) /(2 m)
$$

- walk mixes, that is, converges to $\overrightarrow{\boldsymbol{\pi}}$

$$
\lim _{t \rightarrow \infty}\left\|P^{t} \overrightarrow{\mathbb{1}}_{s}-\vec{\pi}\right\|=0
$$

Idea of the Algorithm

idea test for vertices with large mixing time

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -
2. perform poly (n) random walks from S

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -
2. perform poly (n) random walks from S

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -
2. perform poly (n) random walks from S

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -
2. perform poly (n) random walks from S
3. check if walks for some $v \in S$ mixed poorly after $\Theta(\log n)$ steps

Idea of the Algorithm

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1 / \epsilon)$ vertices S -
2. perform poly (n) random walks from S
3. check if walks for some $v \in S$ mixed poorly after $\Theta(\log n)$ steps
...but keeping all traces is costly: > poly(n) bits

Reducing Congestion

1. attempt: transmit full traces

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P^{t} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$

Reducing Congestion

1. attempt: transmit full traces can approximate $\left\|P^{t} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ but $\log n \cdot \operatorname{poly}(n)=\Omega(n)$ rounds

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P t \overrightarrow{1}_{S}-\pi\right\| \forall s \in S$
but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds
2. attempt: transmit only tokens

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P{ }^{T} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds

2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P{ }^{T} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$
but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds

2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\left\|P^{t} \frac{1}{|S|} \sum_{s \in S} \overrightarrow{\mathbb{1}}_{s}-\pi\right\|$ only

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P P^{T} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds
2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\left\|\mathrm{P}^{\mathrm{t}} \frac{1}{|S|} \sum_{s \in S} \overrightarrow{\mathrm{I}}_{s}-\pi\right\|$ only
3. attempt: transmit start vertices

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P P^{T} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds
2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\left\|\mathrm{P}^{\mathrm{t}} \frac{1}{|S|} \sum_{s \in S} \overrightarrow{\mathrm{I}}_{s}-\pi\right\|$ only
3. attempt: transmit start vertices can approximate $\left\|P t \overrightarrow{1}_{S}-\pi\right\| \forall s \in S$

Reducing Congestion

1. attempt: transmit full traces
can approximate $\left\|P P^{T} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ but $\log n \cdot$ poly $(n)=\Omega(n)$ rounds
2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\left\|\mathrm{P}^{\mathrm{t}} \frac{1}{|S|} \sum_{s \in S} \overrightarrow{\mathrm{I}}_{s}-\pi\right\|$ only
3. attempt: transmit start vertices can approximate $\left\|P{ }^{P} \overrightarrow{\mathbb{1}}_{S}-\pi\right\| \forall s \in S$ requires only $\mathcal{O}(\log n)$ rounds

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O\left(\frac{\log n}{\epsilon \Phi^{2}}\right)$, and a lower bound of $\Omega(\log n)$.

- lower bound is based on high girth expander graphs

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O\left(\frac{\log n}{\epsilon \Phi^{2}}\right)$, and a lower bound of $\Omega(\log n)$.

- lower bound is based on high girth expander graphs
- first two-sided error distributed tester
- voting rule taken from one-sided error testing
- power of other rules?

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O\left(\frac{\log n}{\epsilon \Phi^{2}}\right)$, and a lower bound of $\Omega(\log n)$.

- lower bound is based on high girth expander graphs
- first two-sided error distributed tester
- voting rule taken from one-sided error testing
- power of other rules?
- lower bound for one-sided error tester of conductance?

