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Property Testing

Given a graph G = (V, E), decide with prob. ≥ 2/3

C3-free
accept

ε-close to C3-free
don’t care

ε-far from C3-free
reject

distance “ε-far from” = need to modify more than ε|E| edges
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Distributed Property Testing in the CONGEST model

• input graph G = (V, E)
• each vertex has id ∈ poly(n)
• processor on each vertex v ∈ V

• synchronized rounds
one round for vertex v ∈ V :
1. unlimited local computation
2. ∀u ∈ Γ(v): send O(log n) bits to u
3. ∀u ∈ Γ(v): receive message from u

• after last round
• every vertex votes accept or reject
• tester rejects iff at least one vertex
votes reject

• complexity measure: #rounds
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Conductance In Pictures
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Conductance More Formally

For S ⊆ V  , Φ(S) = |E(S, V \ S)| 
|(S× V) ∩ E|  

Φ(G) = min
S⊂V

|E(S,S)|≤|E(S̄,S̄)|

Φ(S)
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Testing of Conductance

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O( log n

εΦ2 ), and a lower bound of Ω(log n).

• tester works also for connected graphs of unknown size
• votes can be made all accept / all reject
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Lazy Random Walks

• random walker starts on s ∈ V

• goes u→ v, v ∈ Γ(u) with probability

p(v,u) =

 1
2d(u) if u 6= v
1
2 if u = v

• stationary distribution

~πv = d(v)/(2m)

• walk mixes, that is, converges to ~π

lim
t→∞

‖Pt~1s − ~π‖ = 0
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Idea of the Algorithm

idea test for vertices with large mixing time

algorithm 1. sample Θ(1/ε) vertices S   
2. perform poly(n) random walks from S
3. check if walks for some v ∈ S mixed poorly
after Θ(log n) steps

…but keeping all traces is costly: > poly(n) bits
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Reducing Congestion

1. attempt: transmit full traces

can approximate ‖Pt~1s − π‖ ∀s ∈ S
but log n · poly(n) = Ω(n) rounds

2. attempt: transmit only tokens

requires only O(log n) rounds
but approx. ‖Pt 1|S|

∑
s∈S~1s − π‖ only

3. attempt: transmit start vertices

can approximate ‖Pt~1s − π‖ ∀s ∈ S
requires only O(log n) rounds
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Summary

Theorem
There is a tester for conductance Φ in the CONGEST model
with round complexity O( log n

εΦ2 ), and a lower bound of Ω(log n).

• lower bound is based on high girth expander graphs

• first two-sided error distributed tester
• voting rule taken from one-sided error testing
• power of other rules?

• lower bound for one-sided error tester of conductance?
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