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disky(v): subgraph induced freq,(G): for each k-disk isomorphism

by BFS(v) of depth k type calculate its share of vertices
o—o 0.4\ ¢
freq2< Z, ) =(0.6 )<
> 1
‘[GR’09]
\Z
disk; (@) II constant-query testable iff
disk,(@) freq;(G) indicates membership

Goldreich, Ron, STOC’09 5
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remove ednredges for any € > 0

A\

con. comp. of size < p(€) for some p

Theorem (informal) [BSS’08]
If graph G is p(e)-hyperfinite, then any graph H with
freq(G) » freq(H) is p’(e)-hyperfinite for some p” = p.

Benjamini, Schramm, Shapira, STOC’08 8
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[NS’11]

Yy

IT is p-hyperfinite IT has constant

query complexity
e.g. II = connectivity p

L> contains expanders AT c IL || = oo:

IT" is p’-hyperfinite

Theorem [with PS]
Every non-trivial, constant-query testable property of bounded-

degree graphs contains an infinite hyperfinite subproperty.

Newman, Sohler, STOC ’11 9
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B bounded-degreemodel general graphs
Xl input structure: adjacency lists
O error: 2-sided 1-sided

0\9\ What can a constant-query

property tester do?
BFS
random / subsampling BFS

N\

(o]

Theorem (informal) [with CPS]
Every constant-query property tester for general graphs that
queries adjacency lists can be reduced to (multiple) random BFS.

joint work with Czumaj, Peng, Sohler 10
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The Streaming Model

O general graphs
T input structure: adj

adjaceney
i error: 1-sided

alictc
1

ists stream of edges

objective: o(n) space

e some problems Q(n) in adversarial-order streams
e trivial if number of edges is O(n)
e recent model: random-order streams

Theorem (informal) [with CPS]

One-sided error constant-query testers that query adjacency lists
admit a O(log n)-space random-order streaming tester.

Monemizadeh, Muthukrishnan, Peng, Sohler, ICALP’17; Peng, Sohler, SODA’18
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