Property Testing of Graphs and the Role of Neighborhood Distributions

Hendrik Fichtenberger

February 11, 2020

Property Testing: in Context

Property Testing: in Context

time complexity: $\Omega(|V|)$

complexity: # queries to data structure

Solution bounded-degree model: $\forall v \in V : d(v) \leq d, d \in O(1), n := |V|$ **Solution** input structure: adjacency lists (1 query $\hat{=}$ 1 entry) **Solution** error: 2-sided **Solution** bounded-degree model: $\forall v \in V : d(v) \leq d, d \in O(1), n := |V|$ **Solution** input structure: adjacency lists (1 query $\hat{=}$ 1 entry) **Solution** error: 2-sided

 $q(\epsilon, d)$ | planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ...

Solution bounded-degree model: $\forall v \in V : d(v) \le d, d \in O(1), n := |V|$ input structure: adjacency lists (1 query = 1 entry) 🛛 error: 2-sided

 $q(\epsilon, d)$ planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ... $\Theta(\sqrt{n})$ 2-colorability, expander $\Omega(n)$ 3-colorability

Solution bounded-degree model: $\forall v \in V : d(v) \leq d, d \in O(1), n := |V|$ **Solution** input structure: adjacency lists (1 query $\hat{=}$ 1 entry) **Solution** error: 2-sided

 $q(\epsilon, d)$ planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ... no dependence on *n* dependence on *n*

 $\Theta(\sqrt{n})$ – 2-colorability, expander

$$\Omega(n) = 3$$
-colorability

b bounded-degree model: $\forall v \in V : d(v) \le d, d \in O(1), n := |V|$ **i** input structure: adjacency lists (1 query = 1 entry) **b** error: 2-sided

 $q(\epsilon, d) = \text{planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ... no dependence on$ *n*why? dependence on*n* $why? <math display="block">\Theta(\sqrt{n}) = 2\text{-colorability, expander}$ $\Omega(n) = 3\text{-colorability}$

freq $_k(G)$: for each k-disk isomorphism type calculate its share of vertices

freq $_k(G)$: for each k-disk isomorphism type calculate its share of vertices

 Π constant-query testable iff freq_k(G) indicates membership

Small Frequency-Preserver Graphs

Theorem [Alon'11]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

Alon, '11, see: Lovász, Large Networks and Graph Limits, Proposition 19.10

Small Frequency-Preserver Graphs

Theorem [Alon'11]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

Alon, '11, see: Lovász, Large Networks and Graph Limits, Proposition 19.10
Small Frequency-Preserver Graphs

Theorem [Alon'11]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

Alon, '11, see: Lovász, Large Networks and Graph Limits, Proposition 19.10

Theorem [with PS]

Benjamini, Schramm, Shapira, STOC'08

remove *cdn* edges for any $\epsilon > 0$ $\rho(\epsilon)$ for some ρ **Theorem (informal) [BSS'08]**

If graph *G* is $\rho(\epsilon)$ -hyperfinite, then any graph *H* with freq(*G*) \approx freq(*H*) is $\rho'(\epsilon)$ -hyperfinite for some $\rho' \approx \rho$.

 Π is $\rho\text{-hyperfinite}$

 Π has constant query complexity

Theorem [with PS]

Every non-trivial, constant-query testable property of boundeddegree graphs contains an infinite hyperfinite subproperty.

bounded-degree model
input structure: adjacency lists
error: 2-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided

bounded degree model general graphs
input structure: adjacency lists

🛛 error: 2 sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2 sided 1-sided

What can a constant-query property tester do?

bounded degree model general graphs
input structure: adjacency lists
error: 2 sided 1-sided

What can a constant-query property tester do? BFS

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 2-sided 1-sided

What can a constant-query property tester do? BPS random / subsampling BFS

Theorem (informal) [with CPS]

Every constant-query property tester for general graphs that queries adjacency lists can be reduced to (multiple) random BFS.

general graphs
input structure: adjacency lists
error: 1-sided

🔰 general graphs

input structure: adjacency lists stream of edges

🗵 error: 1-sided

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

• some problems $\Omega(n)$ in adversarial-order streams

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is O(n)

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)
- recent model: random-order streams

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)
- recent model: random-order streams

Theorem (informal) [with CPS]

One-sided error constant-query testers that query adjacency lists admit a $O(\log n)$ -space random-order streaming tester.

• characterize constant-query properties

▶ role of small connected components / cuts

- characterize constant-query properties
 - ▶ role of small connected components / cuts
 - ▶ relate k-disk vectors and combinatorial properties

- characterize constant-query properties
 - ▶ role of small connected components / cuts
 - ▶ relate k-disk vectors and combinatorial properties

Ω(n)

- reduce stronger models to streaming setting
 - degree / adjacency matrix queries

- characterize constant-query properties
 - ▶ role of small connected components / cuts
 - ▶ relate k-disk vectors and combinatorial properties

Ω(n)

- reduce stronger models to streaming setting
 - degree / adjacency matrix queries
 - ▶ 2-sided error

