You say it’s only constant?

Then something must be hyperfinite!

And | say your title is too long.

Hendrik Fichtenberger
July 20, 2019
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complexity: # queries to adjacency list entries
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Property Testing of Bounded Degree Graphs

bounded degree graphs: Vv €V : d(v) < d,d € O(1)

q(e) planar, degree-regular, cycle-free, subgraph-free,
connected, minor-free, hyperfinite, ...

0(/n) bipartite, expander
WV big picture?

bounded-degree graphs:
little known about
constant-time testability
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k-Disks and Frequency Vectors

diskg(v): subgraph induced
by BFS(v) of depth k

diSkl (.)
dlSkz(.)

freq,(G): for each k-disk isomorphism
type calculate its share of vertices

()
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0
frequency vector is a
locality feature



Constant-Query Testers

A

14+

© @
@
m O

¢(— reject

accept

>

1
Theorem [GR’09, ...]

Every property tester with constant query complexity g : = q(e)
can be transformed into an algorithm that

1. computes an approximation t:r;a@(q)(G) of freq@(q)(G)

2. accepts iff ||freq@(q)(G) freq@(q)(G )y = for any G" € 1T

e(q)

Goldreich, Ron, STOC’09 4
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In every planar graph, there exists a set of \/n separators

remove €n edges

components of size e?
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Hyperfinite Graphs

€e=05
€=0.6

Definition

(e,s)-hyperfinite: can remove at most edn edges to obtain
connected components of size at most s

p-hyperfinite: (e, p(¢))-hyperfinite for all € € (0, 1]
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The Story so Far

ITis characterized
by its k-disk distribution r

[GR09]
[NS’11]
— ™ Y
ITis p-hyperfinite IT has constant

query complexity

[FPS’19]
e.g. II = connectivity
L> contains expanders Il cI:

Il is p’-hyperfinite

Newman, Sohler, STOC’11; Fichtenberger, Peng, Sohler, SODA’19 6



Small Frequency-Preserver Graphs
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S / freq,.(H)
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freq, (@)
—, 7

Theorem [Alon’11]
For every ,k > 0, there exists M(J, k) such that for every G there
exists H of size at most M(J, k) and |freq,(G) - freq,.(H)|; < 9.

Alon, ’11, see: Lovasz, Large Networks and Graph Limits, Proposition 19.10 7



Small Frequency-Preserver Graphs

n

DL
el

For p-hyperfinite graphs
U(S,k) is at most @
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Theorem [Alon’11]

For every ,k > 0, there exists M(J, k) such that for every G there
exists H of size at most M(J, k) and |freq,(G) - freq,.(H)|; < 9.

WO Greq (HD

Alon, '11, see: Lovasz, Large Networks and Graph Limits, Proposition 19.10 7
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Putting Everything Into The Property Testing Blender

start w/ G €I1 freq. pres. blow-up modify

NN T S
O

O & B

rel. IT inII ? e-close to IT inII
hypf. ? ? (0, M(6,k))- (e, M(8,k))-
hyperfinite hyperfinite
size n 0(1) n n
freq. v. original <98/2 =10 <9/2
~_ )~ ~— =

change



Connection Between Hyperfinite Graphs and k-Disks

106 H
freq;.(G) @
10e

If G is p(e)-hyperfinite, then all H with |freq,(G) - freq.(H)|; < —
are p(f(€))-hyperfinite for some function f.

Theorem [BSS 08]

Benjamini, Schramm, Shapira, STOC’08 9
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for every n
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Open (Bl)ending

ITis characterized
by its k-disk distribution r

[GR09]
[NS’11]
— ™ Y
ITis p-hyperfinite IT has constant

query complexity

[FPS’19]
e.g. II = connectivity
L> contains expanders Il cI:

Il is p’-hyperfinite



