You say it's only constant? Then something must be hyperfinite!

And I say your title is too long.

Hendrik Fichtenberger July 20, 2019

time complexity: $\Omega(|V|)$

complexity: # queries to adjacency list entries

bounded degree graphs: $\forall v \in V : d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad + \text{ planar}$

bounded degree graphs: $\forall v \in V : d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad + \text{planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ...}$

bounded degree graphs: $\forall v \in V : d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad \text{planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ...}$ $\Theta(\sqrt{n}) \qquad \qquad \text{bipartite, expander}$

bounded degree graphs: $\forall v \in V : d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \text{planar, degree-regular, cycle-free, subgraph-free, connected, minor-free, hyperfinite, ...}$ $\Theta(\sqrt{n}) \qquad \text{bipartite, expander} \qquad \text{big picture?}$

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

freq $_k(G)$: for each k-disk isomorphism type calculate its share of vertices

$$freq_2 \left(\begin{array}{c} 0.4 \\ 0.6 \\ \vdots \\ \hline \Sigma & 1 \end{array} \right) = \begin{pmatrix} 0.4 \\ 0.6 \\ \vdots \\ \hline \end{array}$$

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

freq $_k(G)$: for each k-disk isomorphism type calculate its share of vertices

Constant-Query Testers

Theorem [GR'09, ...]

Every property tester with constant query complexity $q:=q(\epsilon)$ can be transformed into an algorithm that

- 1. computes an approximation $\widetilde{\operatorname{freq}}_{\Theta(q)}(G)$ of $\operatorname{freq}_{\Theta(q)}(G)$
- 2. accepts iff $\|\widetilde{\mathrm{freq}}_{\Theta(q)}(G) \mathrm{freq}_{\Theta(q)}(G')\|_1 \leq \frac{1}{\Theta(q)}$ for any $G' \in \Pi$

Definition

 (ϵ, \mathbf{s}) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

ρ-hyperfinite: (ε, ρ(ε))-hyperfinite for all ε ∈ (0, 1]

Definition

 (ϵ, \mathbf{s}) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

ρ-hyperfinite: (ε, ρ(ε))-hyperfinite for all ε ∈ (0, 1]

Definition

 (ϵ, \mathbf{s}) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

ρ-hyperfinite: (ε, ρ(ε))-hyperfinite for all ε ∈ (0, 1]

 $\Pi \mbox{ is characterized} \\ \mbox{by its k-disk distribution} \\$

 Π is *ρ*-hyperfinite

Π has constant query complexity

 Π is characterized by its k-disk distribution $\begin{tabular}{c} $ [GR'09] \\ \hline $ \Pi$ has constant \\ query complexity \end{tabular}$

 Π is ρ -hyperfinite

 Π is ρ -hyperfinite

The Story so Far

Small Frequency-Preserver Graphs

Theorem [Alon'11]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

Small Frequency-Preserver Graphs

Theorem [Alon'11]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

start w/ $G \in \Pi$

rel. Π in Π

hypf. ?

size n

freq. v. original change

Connection Between Hyperfinite Graphs and k-Disks

Theorem [BSS'08]

If G is $\rho(\epsilon)$ -hyperfinite, then all H with $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \frac{10\epsilon}{d}$ are $\rho(f(\epsilon))$ -hyperfinite for some function f.

 $\mathsf{pick}\; G \in \Pi$

 $\operatorname{pick} G \in \Pi$

Open (BI)ending

