
You say it’s only constant?
Then something must be hyperfinite!

And I say your title is too long.

Hendrik Fichtenberger

July 20, 2019
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𝜖 10
# edge edits

|𝑉 |+|𝐸|

𝜖-close 𝜖-far 𝜖-far

complexity: # queries to adjacency list entries
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𝑞(𝜖) planar, degree-regular, cycle-free, subgraph-free,

connected, minor-free, hyperfinite, ...

bipartite, expanderΘ(√𝑛)
big picture?

bounded-degree graphs:
little known about
constant-time testability
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disk𝑘(𝑣): subgraph induced
by BFS(𝑣) of depth 𝑘

freq𝑘(𝐺): for each 𝑘-disk isomorphism
type calculate its share of vertices

freq2( ) = (
0.4
0.6
⋮
)

∑ 1

frequency vector is a
locality feature
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Constant-Query Testers

accept

reject

1

1

Π

Π

Π Π

Π

Theorem [GR’09, …]
Every property tester with constant query complexity 𝑞 ∶= 𝑞(𝜖)
can be transformed into an algorithm that

1. computes an approximation f̃reqΘ(𝑞)(𝐺) of freqΘ(𝑞)(𝐺)
2. accepts iff ‖f̃reqΘ(𝑞)(𝐺) − freqΘ(𝑞)(𝐺′)‖1 ≤ 1

Θ(𝑞) for any 𝐺′ ∈ Π

Goldreich, Ron, STOC’09 4
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Hyperfinite Graphs

In every planar graph, there exists a set of √𝑛 separators

remove 𝜖𝑛 edges

components of size 𝜖−2
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Π has constant
query complexity

Π is characterized
by its k-disk distribution

Π is 𝜌-hyperfinite

[GR’09]
[NS’11]

e.g. Π = connectivity

contains expanders ∃ Π′ ⊆ Π:

Π′ is 𝜌′-hyperfinite

[FPS’19]
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Small Frequency-Preserver Graphs
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Theorem [Alon’11]
For every 𝛿, 𝑘 > 0, there exists 𝑀(𝛿, 𝑘) such that for every 𝐺 there
exists 𝐻 of size at most 𝑀(𝛿, 𝑘) and ‖freq𝑘(𝐺) − freq𝑘(𝐻)‖1 < 𝛿 .

Alon, ’11, see: Lovász, Large Networks and Graph Limits, Proposition 19.10 7
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For ρ-hyperfinite graphs
M(δ,k) is at most

Theorem [Alon’11]
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𝑂(1)
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?

< 𝛿/2
𝑛

(0,𝑀(𝛿, 𝑘))-
hyperfinite

blow-up

𝜖-close to Π

= 0

in Π

𝑛

(𝜖,𝑀(𝛿, 𝑘))-
hyperfinite

modify

< 𝛿/2

8



Connection Between Hyperfinite Graphs and 𝑘-Disks

freq𝑘(𝐺)

freq𝑘(𝐻)10𝜖
𝑑

𝐺

𝐻

Theorem [BSS’08]

If 𝐺 is 𝜌(𝜖)-hyperfinite, then all 𝐻 with ‖freq𝑘(𝐺) − freq𝑘(𝐻)‖1 < 10𝜖
𝑑

are 𝜌(𝑓 (𝜖))-hyperfinite for some function 𝑓 .

Benjamini, Schramm, Shapira, STOC’08 9
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Open (Bl)ending

Π has constant
query complexity

Π is characterized
by its k-disk distribution

Π is 𝜌-hyperfinite

[GR’09]
[NS’11]

e.g. Π = connectivity

contains expanders ∃ Π′ ⊆ Π:

Π′ is 𝜌′-hyperfinite

[FPS’19]
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