Consistent k-Clustering for General Metrics

Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, Ola Svensson SODA 2021

input model: stream of point insertions $(p_1, p_2, ..., p_n) \rightarrow \text{sets } P_1, P_2, ...$

input model: stream of point insertions $(p_1, p_2, ..., p_n) \rightarrow \text{sets } P_1, P_2, ...$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \quad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

.2

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

$$\underset{\substack{C_i \subset P_i \\ |C_i| = k}}{\operatorname{arg\,min}} \sum_{p \in P_i} d(p, C_i) \qquad \forall i \in [n]$$

consistency objective: approximate solution with as few center swaps as possible

$$\min \sum_{i \in [n]} |C_i \smallsetminus C_{i-1}|$$

Main Result

An insertion-only streaming algorithm that maintains an O(1)-approximate k-median solution and swaps at most $O(k \cdot \text{polylog}(n, \Delta))$ centers during the entire execution.

spread of metric total number of points number of centers

Main Result

An insertion-only streaming algorithm that maintains an O(1)-approximate k-median solution and swaps at most $O(k \cdot \text{polylog}(n, \Delta))$ centers during the entire execution.

Lower Bound [LV17]

 $\Omega(k \log(n\Delta))$ swaps are neccessary even for offline setting.

Main Result

An insertion-only streaming algorithm that maintains an O(1)-approximate k-median solution and swaps at most $O(k \cdot \text{polylog}(n, \Delta))$ centers during the entire execution.

Lower Bound [LV17]

 $\Omega(k \log(n\Delta))$ swaps are neccessary even for offline setting.

Related Work

Previous result [LV17]: $O(k^2 \log(n\Delta)^4)$ Deterministic with outliers [GKSX20]: $O(k^2 \log(n\Delta)^2)$ Dynamic consistent clustering [CHPSS19, GKLX20, ...]

essentially tight

Main Result

An insertion-only streaming algorithm that maintains an O(1)-approximate k-median solution and swaps at most $O(k^{-}$ polylog (n, Δ)) centers during the entire execution.

Lower Bound [LV17]

 $\Omega(k \log(n\Delta))$ swaps are neccessary even for offline setting.

Related WorkPrevious result [LV17]: $O(k^2 \log(n\Delta)^4)$ Deterministic with outliers [GKSX20]: $O(k^2 \log(n\Delta)^2)$ Dynamic consistent clustering [CHPSS19, GKLX20, ...]

assumption: $OPT_{guess} \le OPT_k \le c \cdot OPT_{guess}$ $recompute solution O(log(\Delta n))$ times from scratch

assumption: $OPT_{guess} \leq OPT_k \leq c \cdot OPT_{guess}$ recompute solution $O(\log(\Delta n))$ times from scratch problem: given a stream of $m = O(k \cdot polylog(n))$ weighted points and O(n) weight updates, maintain solution with at most O(m) swaps $\int [LV17]: O(k \cdot m)$

assumption: $OPT_{guess} \leq OPT_k \leq c \cdot OPT_{guess}$ recompute solution $O(\log(\Delta n))$ times from scratch problem: given a stream of $m = O(k \cdot polylog(n))$ weighted points and O(n) weight updates, maintain solution with at most O(m) swaps $[LV17]: O(k \cdot m)$

assumption: $OPT_{guess} \leq OPT_k \leq c \cdot OPT_{guess}$ recompute solution $O(\log(\Delta n))$ times from scratch problem: given a stream of $m = O(k \cdot polylog(n))$ weighted points and O(n) weight updates, maintain solution with at most O(m) swaps $[LV17]: O(k \cdot m)$

- \blacktriangleright remove the ℓ unpaired centers but maintain approximation
 - open l + 1 inserted points as centers ($\rightarrow k + 1$ centers)
 - \blacktriangleright swap $O(\ell)$ centers to obtain a good solution with k centers

- -• repeat (until $OPT_k > c \cdot OPT_{guess}$)

- "epoch" \bullet open $\ell + 1$ inserted points as centers ($\rightarrow k + 1$ centers) \bullet swap $O(\ell)$ centers to obtain a good solution with k centers

 - -• repeat (until $OPT_k > c \cdot OPT_{guess}$)

$$\rightarrow$$
 repeat (until OPT_k > c · OPT_{guess})

well-separated pairs

well-separated pairs

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

at the cluster's border

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robustify each center against future insertions at the cluster's border

robust centers

well-separated, robust centers are approximately optimal not well-separated centers can be removed

Summary

- O(1)-approximate k-clustering with $O(k \cdot \text{polylog}(n, \Delta))$ consistency
- tight up to polylogarithmic factors (even for offline setting)
- ▶ analysis exploits structural properties, algorithm is based on epochs
- ▶ is there a simpler approach, e.g., by local search?