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input model: stream of point insertions {py, po, ..., pp) — sets Py, Py, ...
classic objective: maintain k centers that minimize clustering cost:

arg min Z d(p.C) Vi € [n]
GCP: peP,
‘Ci|:k
consistency objective: approximate solution with as few center swaps as possible
min Z |Cl AN Ci—1|

i€[n]
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Main Result
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can only change O(1) centers per insertion!
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well-separated pairs robust centers

Q) isolated optimal center and robustify each center

@Q) isolated maintained center against future insertions

@) thatare close to each other at the cluster’s border
\/

well-separated, robust centers are approximately optimal
not well-separated centers can be removed
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» O(1)-approximate k-clustering with O(k - polylog(n, A)) consistency
» tight up to polylogarithmic factors (even for offline setting)
» analysis exploits structural properties, algorithm is based on epochs

» is there a simpler approach, e.g., by local search?



