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|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

optimal solution
might swap centers often

consistency objective: approximate solution with as few center swaps as possible

min ∑
𝑖∈[𝑛]

|𝐶𝑖 ⧵ 𝐶𝑖−1|
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An insertion-only streaming algorithm that maintains
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can only change O(1) centers per insertion!

3



Algorithm

begin end

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

‣ remove the ℓ unpaired centers but maintain approximation

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

‣ remove the ℓ unpaired centers but maintain approximation

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove the ℓ unpaired centers but maintain approximation

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove the ℓ unpaired centers but maintain approximation

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove ℓ = ϴ(#unpaired centers) centers but maintain approximation

4



Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove ℓ = ϴ(#unpaired centers) centers but maintain approximation
needs proof
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Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

robustify each center
against future insertions
at the cluster’s border

well-separated, robust centers are approximately optimal
not well-separated centers can be removed
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Summary

‣ 𝑂(1)-approximate 𝑘-clustering with 𝑂(𝑘 ⋅ polylog(𝑛, Δ)) consistency
‣ tight up to polylogarithmic factors (even for offline setting)
‣ analysis exploits structural properties, algorithm is based on epochs
‣ is there a simpler approach, e.g., by local search?

sparsify robustify

insertions
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