
Consistent k-Clustering for General Metrics

Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, Ola Svensson

SODA 2021

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …

general metric

classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

optimal solution
might swap centers often

1

Consistent Clustering

input model: stream of point insertions ⟨𝑝1, 𝑝2, … , 𝑝𝑛⟩ → sets 𝑃1, 𝑃2, …
classic objective: maintain 𝑘 centers that minimize clustering cost:

argmin
𝐶𝑖⊂𝑃𝑖
|𝐶𝑖|=𝑘

∑
𝑝∈𝑃𝑖

𝑑(𝑝, 𝐶𝑖) ∀𝑖 ∈ [𝑛]

optimal solution
might swap centers often

consistency objective: approximate solution with as few center swaps as possible

min ∑
𝑖∈[𝑛]

|𝐶𝑖 ⧵ 𝐶𝑖−1|

1

Consistent Clustering

An insertion-only streaming algorithm that maintains

𝑂(𝑘 ⋅ polylog(𝑛, Δ)) centers during the entire execution.
an 𝑂(1)-approximate k-median solution and swaps at most

Main Result

number of centers
total number of points

spread of metric

Lattanzi, Vassilvitskii, ICML’17; Guo et al., preprint ’20; Cohen-Addad et al. NeuRIPS’19; Guo et al., APPROX’20 2

Consistent Clustering

An insertion-only streaming algorithm that maintains

𝑂(𝑘 ⋅ polylog(𝑛, Δ)) centers during the entire execution.
an 𝑂(1)-approximate k-median solution and swaps at most

Main Result

Ω(𝑘 log(𝑛Δ)) swaps are neccessary even for offline setting.
Lower Bound [LV17]

Lattanzi, Vassilvitskii, ICML’17; Guo et al., preprint ’20; Cohen-Addad et al. NeuRIPS’19; Guo et al., APPROX’20 2

Consistent Clustering

An insertion-only streaming algorithm that maintains

𝑂(𝑘 ⋅ polylog(𝑛, Δ)) centers during the entire execution.
an 𝑂(1)-approximate k-median solution and swaps at most

Main Result

Ω(𝑘 log(𝑛Δ)) swaps are neccessary even for offline setting.
Lower Bound [LV17]

Related Work
Previous result [LV17]: 𝑂(𝑘2 log(𝑛Δ)4)
Deterministic with outliers [GKSX20]: 𝑂(𝑘2 log(𝑛Δ)2)
Dynamic consistent clustering [CHPSS19, GKLX20, …]

Lattanzi, Vassilvitskii, ICML’17; Guo et al., preprint ’20; Cohen-Addad et al. NeuRIPS’19; Guo et al., APPROX’20 2

Consistent Clustering

An insertion-only streaming algorithm that maintains

𝑂(𝑘 ⋅ polylog(𝑛, Δ)) centers during the entire execution.
an 𝑂(1)-approximate k-median solution and swaps at most

Main Result

Ω(𝑘 log(𝑛Δ)) swaps are neccessary even for offline setting.
Lower Bound [LV17]

Related Work
Previous result [LV17]: 𝑂(𝑘2 log(𝑛Δ)4)
Deterministic with outliers [GKSX20]: 𝑂(𝑘2 log(𝑛Δ)2)
Dynamic consistent clustering [CHPSS19, GKLX20, …]

essentially
tight

Lattanzi, Vassilvitskii, ICML’17; Guo et al., preprint ’20; Cohen-Addad et al. NeuRIPS’19; Guo et al., APPROX’20 2

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

3

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

problem: given a stream of 𝑚 = 𝑂(𝑘 ⋅ polylog(𝑛)) weighted points and 𝑂(𝑛) weight updates,
maintain solution with at most 𝑂(𝑚) swaps

[LV17]: 𝑂(𝑘 ⋅ 𝑚)

3

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

problem: given a stream of 𝑚 = 𝑂(𝑘 ⋅ polylog(𝑛)) weighted points and 𝑂(𝑛) weight updates,
maintain solution with at most 𝑂(𝑚) swaps

[LV17]: 𝑂(𝑘 ⋅ 𝑚)

3

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

problem: given a stream of 𝑚 = 𝑂(𝑘 ⋅ polylog(𝑛)) weighted points and 𝑂(𝑛) weight updates,
maintain solution with at most 𝑂(𝑚) swaps

[LV17]: 𝑂(𝑘 ⋅ 𝑚)

3

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

problem: given a stream of 𝑚 = 𝑂(𝑘 ⋅ polylog(𝑛)) weighted points and 𝑂(𝑛) weight updates,
maintain solution with at most 𝑂(𝑚) swaps

[LV17]: 𝑂(𝑘 ⋅ 𝑚)

3

Consistent Clustering

assumption: OPTguess ≤ OPT𝑘 ≤ 𝑐 ⋅ OPTguess
recompute solution 𝑂(log(Δ𝑛)) times from scratch

problem: given a stream of 𝑚 = 𝑂(𝑘 ⋅ polylog(𝑛)) weighted points and 𝑂(𝑛) weight updates,
maintain solution with at most 𝑂(𝑚) swaps

[LV17]: 𝑂(𝑘 ⋅ 𝑚)

can only change O(1) centers per insertion!

3

Algorithm

begin end

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

‣ remove the ℓ unpaired centers but maintain approximation

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

‣ remove the ℓ unpaired centers but maintain approximation

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove the ℓ unpaired centers but maintain approximation

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove the ℓ unpaired centers but maintain approximation

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove ℓ = ϴ(#unpaired centers) centers but maintain approximation

4

Algorithm

begin end

with final optimal centers
pair maintained centers

if they are close

algorithm:
‣ open ℓ + 1 inserted points as centers (→ 𝑘 + 1 centers)
‣ swap 𝑂(ℓ) centers to obtain a good solution with 𝑘 centers

“epoch”

‣ repeat (until OPT𝑘 > 𝑐 ⋅ OPTguess)

problem: future unknown

‣ remove ℓ = ϴ(#unpaired centers) centers but maintain approximation
needs proof

4

Key Elements of the Analysis

well-separated pairs

5

Key Elements of the Analysis

well-separated pairs

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

robustify each center
against future insertions
at the cluster’s border

5

Key Elements of the Analysis

well-separated pairs

isolated optimal center and
isolated maintained center
that are close to each other

robust centers

robustify each center
against future insertions
at the cluster’s border

well-separated, robust centers are approximately optimal
not well-separated centers can be removed

5

Summary

‣ 𝑂(1)-approximate 𝑘-clustering with 𝑂(𝑘 ⋅ polylog(𝑛, Δ)) consistency
‣ tight up to polylogarithmic factors (even for offline setting)
‣ analysis exploits structural properties, algorithm is based on epochs
‣ is there a simpler approach, e.g., by local search?

sparsify robustify

insertions

6

