
Signal/Background Classification of Time
Series for Biological Virus Detection∗

Dominic Siedhoff, Hendrik Fichtenberger, Pascal Libuschewski,
Frank Weichert, Christian Sohler, and Heinrich Müller

TU Dortmund, Germany

This work proposes translation-invariant features based on a wavelet trans-
form that are used to classify time series as containing either relevant sig-
nals or noisy background. Due to the translation-invariant property, signals
appearing at arbitrary locations in time have similar representations in fea-
ture space. Classification is carried out by a condensed k-Nearest-Neighbors
classifier trained on these features, i.e. the training set is reduced for faster
classification. This reduction is conducted by a k-means clustering of the
original training set and using the obtained cluster centers as a new training
set. The coreset-technique BICO is employed to accelerate this initial clus-
tering for big datasets. The resulting feature extraction and classification
pipeline is applied successfully in the context of biological virus detection.
Data from Plasmon Assisted Microscopy of Nano-size Objects (PAMONO)
is classified, achieving accuracy 0.999 for the most important classification
task.

1 Introduction

Methods for reliable detection of biological viruses by means of inexpensive sensor de-
vices have gained an increasing interest in research. The PAMONO method (Plasmon
Assisted Microscopy of Nano-size Objects) [18] enables construction of a biosensor which
is capable of indirectly detecting nano-sized particles, including fine dust and biological
viruses, using inexpensive components from microscopy. It has potential applications in
diagnostics as well as pharmaceutical research because virus-antibody-bindings can be
detected, enabling to investigate the ability of antibodies to bind certain viruses.

∗The final authenticated version is available online at https://doi.org/10.1007/978-3-319-11752-2 31.

1

https://doi.org/10.1007/978-3-319-11752-2_31

The sensor produces a time series of 2D images, constituting a large spatio-temporal
volume of data (e.g. 4000 images with 1080 × 145 pixels in one measurement), hence
automatic analysis is desirable. One crucial step in this analysis is the separation of
pixels that are affected by a nano-particle adhesion (signal) from those that are not
(background). This separation can be carried out by examining the time series of in-
tensities measured at the pixels because they exhibit characteristic patterns (cf. Figure
1): When a particle appears, pixels in the center of the particle exhibit an up signal in
the time series and pixels around it exhibit a down signal. These two signals indicate a
particle adhesion. Regions not affected by particles contain only background noise.

This work proposes wavelet-based features of the time series from which a fast con-
densed k-Nearest-Neighbors (k-NN) [9] classifier is learned, to separate particle signals
from background. Since particles may appear at any point in time, the features need to
be translation-invariant, such that signals are similar in feature space, independent of
the time the particle appears.

While translation-invariant (TI) wavelets have been developed for denoising in [4],
their application for feature computation is limited [14]. In face recognition, non-
redundant Discrete Wavelet Transform (DWT) was used as the basis for computing
estimates of the power spectrum in local windows. These estimates served as approxi-
mately TI features [14]. In contrast, [11] use raw coefficient values as features and ensure
the TI property by redundant DWT and signal registration. Our approach combines the
use of TI coefficients with feature extraction. This serves the purposes of dimensionality
reduction and increases robustness to noise.

Furthermore, to speed up learning and classification, the idea of condensing the train-
ing set by removing redundancy and similarities [7, 1, 2] is explored. We extend an
approach from text classification [17] that clusters the training data and uses cluster
centers as a condensed training set. In order to reduce the time taken for clustering,
we apply the BICO algorithm [6] to reduce the input to a smaller coreset, to which
weighted clustering is applied. Finally the cluster centers serve as the training set of a
k-NN learner.

The remainder of this work is organized as follows: Section 2 describes the extraction
of translation-invariant features from wavelet coefficients. Section 3 covers the train-
ing procedure for accelerated k-NN by means of a fast coreset-based clustering that
condenses the training set. Section 4 demonstrates empirical results of the presented
methods as attained for the PAMONO biosensor application. Section 5 provides discus-
sion and future work.

2 Translation-invariant Feature Extraction

Translation-invariant (TI) features are desirable in PAMONO time series classification
because they make the feature space representation of a series independent of the point
in time where the signal (up or down, cf. Figure 1) appears. PAMONO time series
approximately fulfil the circularity condition assumed for the TI wavelets proposed by
Coifman and Donoho [4] utilized here: The signal to be detected has finite support at a

2

t

in
te

ns
ity

up signal

background

down signal
t

particle adhesions
(e.g. viruses) t

Figure 1: Time series of PAMONO images (left) showing seven nano-particles. Magnifi-
cation of a single particle (center) and per pixel time series (right), character-
izing pixels as belonging to a particle (up and down signal) or to background
noise

coefficient index

co
ef

fic
ie

nt
 v

al
ue

up signal

0 200 400
0

0.05

0.1

(a)

coefficient index

co
ef

fic
ie

nt
 v

al
ue

down signal

0 200 400
0

0.05

0.1

(b)

coefficient index

co
ef

fic
ie

nt
 v

al
ue

background

0 200 400
0

0.05

0.1

(c)

Figure 2: Examples of W for time series from the three classes. Scales (i.e. rows of W)
are ordered coarsest (back) to finest (front). Positions on the x axis are column
indices in W. Classes differ in coefficient magnitude and slope, especially for
coarser scales, which is exploited by the features in equations (1)–(8)

random, irrelevant location, preceded and followed by uniform noise. Hence series with
different locations of the signal can be approximately regarded as circular shifts of each
other if we regard the uniform noise as ‘basically the same’ everywhere in the series.

For extracting TI features from a time series, the following preprocessing is applied:
To remove constant offsets in the values, the series mean is subtracted from each value.
Let ~v = [vt]t=1...T denote the values of a single series after this subtraction. Let Ŵ denote
the transform table of the TI wavelet transform from [4], using the maximum level of
decomposition and e.g. the Haar basis (used throughout this paper, as argued for in the

supplemental material [15]). The S×T matrix Ŵ is a non-orthogonal decomposition of
the series ~v into S = log(T) scales with T coefficients per scale. The scales with smaller
index s represent coarser structures of ~v, while those with larger s represent finer details.
The notion of translation-invariance that applies to Ŵ is that a circular shift of the series

3

~v manifests solely as per-scale permutations in Ŵ, i.e. for each of the S rows of Ŵ, the
T entries are permuted. Note that there are neither permutations between coefficients
of different scales, nor is there energy-transfer between any coefficients. The per-scale
permutations are the way in which circular shifts of the input series are encoded by
the transform table. Since the goal is computing features that are invariant to shifts
of the input series – or synonymously invariant to the location of the finite support
of the up or down signal to be detected (cf. Figure 1) – this locational information

must be eliminated. This is done by sorting each scale in Ŵ separately by descending
absolute coefficient values. The resulting matrix of sorted absolute values is called W.
Figure 2 shows examples of W for series ~v from different classes. For any permutation
of coefficients in Ŵ, the same W will result, and hence the locational information has
been removed. Feature computation is carried out with respect to W as detailed in the
following section.

2.1 Features of Translation-invariant Wavelet Coefficients

Let W = [ws,t]s=1...S,t=1...T be the table from section 2 with scale index s and coefficient

index t. Furthermore, let µ (ws,◦) = 1
T

∑T
t=1ws,t yield the mean value over the variable

indicated by the wildcard symbol ◦ for a fixed value of the symbol s. The according

standard deviation is defined analogously as σ (ws,◦) =
√

1
T

∑T
t=1 (ws,t − µ (ws,◦))2. In

the following equations superscript indices are feature names while the subscript s in-
dicates the scale on which a feature is computed. Feature f1s is the mean value of the
coefficients on scale s:

f1s = µ (ws,◦) . (1)

Feature f2s is the ratio of f1s and the mean coefficient value over all scales:

f2s =
f1s

µ (w◦,◦)
. (2)

Feature f3s is the standard deviation of the coefficients on scale s,

f3s = σ (ws,◦) , (3)

while feature f4s is the ratio of f3s and the coefficient standard deviation accumulated
over all scales:

f4s =
f3s∑

r σ (wr,◦)
. (4)

For defining the last four features, let ~rs = [rs,t]t=1...T denote T discrete samples of a
regression line approximating the coefficients ws,t for a fixed scale s. The line is defined
as asx + bs, where as and bs are computed as argminas,bs =

∑
t(ws,t − (asxt + bs))

2,
and the sampling points xt are chosen at the locations of the coefficients ws,t. Hence
rs,t = asxt + bs is the linear approximation of coefficient ws,t. Given these prerequisites,
f5s is the slope of the regression line,

4

f5s = as , (5)

and f6s is the linear approximation of the largest coefficient ws,1

f6s = asx1 + bs . (6)

Feature f7s is the accumulated absolute deviation between coefficients and their linear
approximation, normalized by the accumulated coefficient set:

f7s =

∑
t |ws,t − rs,t|∑

tws,t
. (7)

Feature f8s is defined analogously to f7s but with sums replaced by standard deviations:

f8s =
σ (ws,◦ − rs,◦)

σ (ws,◦)
. (8)

Note that the differences in the numerator of f8s are taken only between coefficients
ws,t and approximations rs,t with the same index t. To prevent numerical issues, a small
constant ε on the order of computational working precision is added to each denominator.

In order to balance the impact of the different features during the distance compu-
tations occuring in subsequent processing stages, the features need to be normalized
accordingly. The employed normalization method is shifting and scaling the range of
each feature to the unit interval [0, 1].

2.2 Feature Ranking and Selection

The employed feature ranking and selection method is based on computing a figure of
merit for each feature. Let g = f js , s ∈ {1 . . . S}, j ∈ {1 . . . 8} denote the single scalar
feature under consideration. Let gci , i ∈ {1 . . . N c}, c ∈ {1 . . . C} denote the values that
feature g attains over the N c examples of class c in the training dataset, where C is the
total number of classes.

The basic measure in computing the figure of merit of a feature g is the mean absolute
distance dc1,c2 between the feature values of class c1 and the mean feature value of class
c2:

dc1,c2 = µ (|gc1◦ − µ (gc2◦)|) . (9)

Using equation (9), the figure of merit mg of feature g is computed as the following ratio:

mg =

∑
c2

∑
c1 6=c2

dc1,c2∑
c d

c,c
. (10)

The numerator of mg accumulates over all classes c2, in how far the mean feature value
for class c2 differs from the feature values for all other classes c1 6= c2. For features
that separate the classes well, this value is large. The denominator accumulates over all

5

classes, in how far feature values vary within a class, hence smaller is better. The features
g are then sorted in the order of descending merit mg, giving a feature ranking assigning
rank 1 to the best feature, rank 2 to the second-best and so forth. For determining the
final sequence of features, Kuncheva’s ranking idea [10] is applied within a 10-fold cross-
validation: The ranks attained by each feature are accumulated over the different folds,
and the features are sorted in the order of ascending accumulated ranks. Kuncheva
indices are computed during this cross-validation in order to assess feature selection
stability. Finally the first F of these features are selected to be used for classification,
where F is chosen to maximize the mean classification performance (e.g. accuracy) in a
second cross-validation using the rank-sorted features and incrementally increasing the
candidate for F .

3 Condensed k-NN Using Fast Coreset Clustering

This section describes how the k-Nearest-Neighbors (k-NN) classifier [9] is accelerated
by computing it from cluster centers of the training data. This involves clustering as a
preprocessing step, which is accelerated for large input sets by using the coreset-based
BICO approach [6]. Section 3.1 explains how coresets can be used for clustering, while
section 3.2 depicts the training procedure and the application of a condensed k-NN
classifier making use of the clustering results.

3.1 Fast Clustering with Coresets

Clustering is often defined as partitioning a set of objects into groups, such that objects
in the same group are similar and objects in different groups are dissimilar. The k-means
problem is a well-studied clustering problem defining similarity via Euclidean distance.

For two points ~p = (p1, . . . , pF), ~q = (q1, . . . , qF) ∈ RF , let ||~p− ~q|| :=
√∑F

i=1 (pi − qi)2
denote their Euclidean distance. Given a matrix P = [~p1; . . . ; ~pN] where each point
~pi ∈ RF is a row vector, the k-means problem asks for a matrix of Km centers Q =
[~q1; . . . ; ~qKm] that minimizes the sum of squared distances of all points in P to their
nearest center in Q, i.e.

min
Q∈RKm×F

cost(P,Q) := min
Q∈RKm×F

∑
~pi∈P

min
~qj∈Q

||~pi − ~qj ||2 . (11)

This is a special case of the weighted k-means problem (with weights all 1), where each
point can be weighted by a function w : RF → R+, i.e. costw(P,Q) =

∑
~pi∈Pw(~pi) min~qj∈Q ||~pi − ~qj ||2

is minimized.
Using k-means as the objective function for condensing the training set is a natural

choice when using k-NN as a classifier because both algorithms decide a point’s member-
ship to a cluster/class via Euclidean distance. By assigning points to the same cluster,
k-means preserves their spatial proximity.

In practice Lloyd’s algorithm [13] is frequently used to optimize equation (11) and
its weighted variant. It is an iterative algorithm converging to a local optimum after

6

a potentially exponential number of steps. The k-means++ algorithm by Arthur and
Vassilvitskii [3] is an improvement of Lloyd’s algorithm, yielding an O(logKm) approx-
imation guarantee. Its runtime is similar to that of Lloyd’s algorithm. Both algorithms
do not scale well and are hence time-consuming for large input data sets.

A way to address this problem is to construct a small summary of the input point
set first and to cluster that summary instead. Such summaries can be formalized as
coresets. A (Km, ε)-coreset for Km sought cluster centers and approximation ratio ε is
a small weighted set of points S ∈ RN ′×F that ensures that the weighted clustering cost
of S for any set of Km centers Q ∈ RKm×F is a (1 + ε)-approximation of the cost of the
original input P ∈ RN×F [8]:

| costw(S,Q)− cost(P,Q)| ≤ ε cost(P,Q) . (12)

Here w : RF → R+ is the weight function, and the number N ′ of points in the coreset
may be considerably smaller than the number N of points in the original dataset P.
Since large data sets may not fit into main memory, and short construction times are
crucial, coresets are often computed in a streaming setting. The BICO algorithm detailed
in [6] is a streaming-capable algorithm for computing coresets. It is used in this work
to reduce the time taken for clustering large input sets. The following section describes
how BICO is integrated into the training procedure of k-NN, yielding a condensed k-NN.

3.2 Training and Application of Condensed k-NN

The input of the training procedure for condensed k-NN is the N × F matrix G, where
rows denote training examples and columns denote normalized features, cf. section 2.1. F
is the number of features selected as according to section 2.2. N is the sum N =

∑C
c=1N

c

of examples belonging to C different classes. In training, class labels are known and can
hence be used to partition G into C per-class matrices Gc. For each class c separately,
the BICO approach is used to compute a coreset Sc of Gc, allowing for very large input
sets. Subsequently weighted k-means++ is used to compute a clustering from each
coreset Sc, condensing the examples in Gc to Km � Nc cluster centers Hc. The union
H = [H1; . . . ;HC] of the per-class cluster centers is then used as the condensed training
set for k-NN. The number Km of cluster centers per class is chosen as to be tractable in
a lazy learning approach like k-NN and can be used for class balancing.

Applying the learned classifier to unlabeled input works as follows: The raw input data
is preprocessed like the training set, using the same feature normalization and selection.
The resulting feature vectors are classified using k-NN with Euclidean distance on the
condensed training set H. The number Kn of nearest neighbors in k-NN is not to be
confused with the number Km of cluster centers in k-means. The output of this k-NN
are predicted labels for the unlabeled input.

4 Results

Three variants of the PAMONO time series classification task were examined to validate
the proposed methods: Task 1 is the three-class separation of the up signal, down signal

7

and background classes (cf. Figures 1 and 2). Task 2a is the separation of the up signal
class from the union of the down signal and background class. Task 2b is the separation
of the up signal from the background class only. The tasks were enumerated in the order
of decreasing difficulty and increasing importance: For nano-particle detection it is most
important to separate the up signals arising at the centers of particle adhesions from the
background arising in regions without particles. Class membership of the small amount
of down signals at the fringes of particles can in practice be neglected because down
signal pixels can be captured by applying morphological closing to the up signal class
mask in image space [5]. This leads to the consideration of task 2b.

Experimental validation was conducted using a total of N = 315000 labeled PAMONO
time series from C = 3 classes as the input. The length was T = 512, resulting in 72
features available for selection (8 features on S = log(T) = 9 scales). To obtain 315000
labeled examples, the signal model in [16] was used to create synthetic time series from
real background images and particle templates. Three measured datasets were used as
the basis for synthesis: 200nm particles on two differently severe levels of noise and one
dataset with 100nm particles.

The input examples are partitioned into two disjoint subsets: The cross-validation set
contains 2/3 of the examples and is used for feature and parameter selection in 10-fold
cross-validation and as the basis to train the condensed k-NN classifier. The test set
contains the remaining 1/3 of examples and is used solely for performance assessment.
Note that for all classification tasks, class distributions were balanced because accuracy
was used as the performance metric, which is sensitive to imbalanced class distributions.

4.0.1 Performance and Parameters.

The number of per-class cluster centers was fixed at Km = 1500 (≈ 0.5% of the total
number of examples) and the coreset size was fixed at N ′ = 5Km. The following ac-
curacies were attained on the test set: task 1: 0.870, task 2a: 0.920, task 2b: 0.999.
For comparison, matching patterns via cosine similarity to T non-cyclic shifts of C ideal
model patterns yields the following accuracies: task 1: 0.894, task 2a: 0.996, task 2b:
0.997. Exhaustive matching against all non-cyclic shifts means that TI conditions hold
exactly here, not only approximately. The superior accuracy in tasks 1 and 2a comes at
the price of requiring model patterns and increased runtime (O(T 2) per time series for
all shifts and distance computations instead of O(T log2(T)) for TI table computation
and sorting). Increasing the coreset size N ′ in the proposed method does not increase
accuracy, but only run time: The mean (over all tasks) gain in accuracy when using
N ′ = 200Km, which is equivalent to clustering the full input, is 0.0011, σ = 0.0016.
Clustering time, on the other hand, increases from a mean value of 72s, σ = 23s to
2252s, σ = 811s (CPU: Intel(R) Core(TM) i7-2600 at 3.4 GHz). For determining the
number F of best features to be selected and the number Kn of neighbors in k-NN, a
grid search was conducted within a 10-fold cross-validation. F and Kn were chosen to
maximize mean accuracy over the folds. Figure 3 plots mean accuracy over parame-
ters per task, with task 2b achieving values close to 1. The spread of accuracies over
the parameter space decreases with decreasing task difficulty. Accuracies saturate with

8

4Neighbors0in0kNN4Features

Classification0task:
up0signal0vs.0down0signal0vs.0background

M
ea

n0
ac

cu
ra

cy
0in

cr
os

s-
va

lid
at

io
n

10
20

30

20
40

60

0

0.5

1

0.75

0.8

0.85

(a)

2Neighbors-in-kNN2Features

Classification-task:
up-signal-vs.-8down-signal∪background9

M
ea

n-
ac

cu
ra

cy
-in

cr
os

s-
va

lid
at

io
n

10
20

30

20
40

60

0

0.5

1

0.82

0.84

0.86

0.88

0.9

0.92

(b)

6Neighbors2in2kNN6Features

Classification2task:
up2signal2vs.2background

M
ea

n2
ac

cu
ra

cy
2in

cr
os

s-
va

lid
at

io
n

10
20

30

20
40

60

0

0.5

1

0.99

0.992

0.994

0.996

0.998

(c)

Figure 3: Mean accuracy in 10-fold cross-validation over the number of best features and
the number of neighbors to be used in k-NN for the three classification tasks

f1 f2 f3 f4 f5 f6 f7 f8
0

0.005

0.01

0.015

0.02

0.025

Figure 4: Kuncheva ranks (lower is more relevant) attained by all features on all scales.
Scales are ordered coarse (left) to fine (right) for each feature f i

increasing parameter values, meaning that F and Kn just need to be ‘large enough’.

4.0.2 Feature Ranking.

Feature ranking was carried out as described in section 2.2. Figure 4 shows the Kuncheva
ranks (lower means ‘more relevant’), normalized by the sum of all ranks over all folds.
The three most important features are located on the coarsest scale and exhibit strictly
decreasing relevance for finer scales. Two of them (f5s and f6s) are based on the re-
gression line. The normalized versions f2s and f4s of f1s and f3s favor finer scales. The
approximation-error-based features f7s and f8s are comparatively irrelevant on all scales.
The figure shows results for classification task 1; for the other tasks, the results are
qualitatively the same. Figure 5(a) plots feature selection stability in terms of the mean
Kuncheva indices attained over the cross-validation. Kuncheva indices are above 0.88
for selecting between 10 and 60 features for all classification tasks (task 1: short dashes,
task 2a: long dashes, task 2b: solid line). Figure 5(b) illustrates that the feature rank-
ing is meaningful in terms of accuracy on the unseen test set: Each feature was used
in isolation to classify the test set. The attained accuracy was plotted over the index
that feature had in Kuncheva’s ranking. Accuracy decreases approximately linearly with
increasing Kuncheva rank.

9

Number1of1regarded1best1features

M
ea

n1
K

un
ch

ev
a'

s1
in

de
x

ov
er

1c
ro

ss
-v

al
id

at
io

n

0 20 40 60
0

0.2

0.4

0.6

0.8

1

(a)

Rank of single selected feature

A
cc

ur
a

cy
 a

tta
in

ed
 o

n
T

es
t s

et

0 20 40 60
0

0.2

0.4

0.6

0.8

1

(b)

noise magnitude / signal magnitude (mi/me)

A
cc

ur
a

cy
 a

tta
in

ed
 o

n
T

es
t s

et

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

(c)

Figure 5: Kuncheva indices (a), single feature accuracies (b) and robustness to noise (c)
for the three classification tasks ‘up vs. down vs. background’ (short dashes),
‘up vs. (down ∪ background)’ (long dashes), ‘up vs. background’ (solid line)

4.0.3 Robustness to Noise.

In order to assess robustness of the features to noise in the input, experiments with
artificial noise were conducted. The standard deviation of each input time series was
computed, and the mean of these values was used as an estimate me of average signal
magnitude. Then the interval [0, 20me] was equidistantly sampled, and for each sample
mi, zero-mean, unit variance Gaussian noise was scaled by mi/me and added to the
original input to give a more noisy input. For each of those noisy inputs a classifier
was trained using the proposed method, and test set accuracy was measured for each
classification task. Figure 5(c) plots these accuracies over mi/me. The values for zero
noise provide a baseline for each classification task. Results deteriorate slowly with
increasing noise, which is especially true for task 2b (solid line), where noise with up
to three times the magnitude of me causes only minor loss. From there on, the slope
of accuracy loss increases. It decreases again, starting at approximately twelve times
more noise than signal, and for each task converges in good approximation to the limit
of random guessing for the respective task (1/2 for the two-class tasks and 1/3 for the
three-class task; balanced class distributions).

5 Discussion and Future Work

A novel set of translation-invariant wavelet-based features for time series classification
was proposed and used in a condensed k-NN classifier with fast coreset-based clustering.
The efficacy of the approach was demonstrated with respect to nano-particle detection.
For the most important classification task of distinguishing the central parts of particle
adhesions from noisy background, accuracy close to 1 was achieved. It was demonstrated
that the method is robust to increasing noise in the input signal and insensitive to its
main parameters (number of features and k in k-NN), as long they are chosen large
enough. Feature selection was shown to be stable, and run time was considerably reduced

10

by using the coreset-based BICO approach for clustering. For the future it is planned
to port the method into a GPU-based detector [12] and assess its impact on quality,
as well as validate it on real data, using quality measures like per-class Precision and
Recall, that are suitable for the imbalanced real class distributions. Furthermore an
examination of classifiers other than k-NN is planned.

Acknowledgments.

Part of the work on this paper has been supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB 876. URL: http://sfb876.
tu-dortmund.de/

References

[1] Alpaydin, E.: Voting over multiple condensed nearest neighbors. Artificial Intelli-
gence Review 11(1-5), 115–132 (1997)

[2] Angiulli, F.: Fast condensed nearest neighbor rule. In: Proceedings of the 22nd
International Conference on Machine Learning. pp. 25–32 (2005)

[3] Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proceedings of the 18th Symposium on Discrete Algorithms (SODA) (2007)

[4] Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. Springer New York
(1995)

[5] Dougherty, E.R.: Introduction to Morphological Image Processing. SPIE Press
(1992)

[6] Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO:
BIRCH meets coresets for k-means clustering. In: Proceedings of the 21st European
Symposium on Algorithms (ESA) (2013)

[7] Gowda, K.C., Krishna, G.: The condensed nearest neighbor rule using the concept
of mutual nearest neighborhood. IEEE Transactions on Information Theory 25(4),
488–490 (1979)

[8] Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the 36th Symposium on Theory of Computing (STOC). pp. 291–300
(2004)

[9] Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. New
York: Springer (2009)

[10] Kuncheva, L.I.: A stability index for feature selection. In: Artificial Intelligence and
Applications (2007)

11

http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/

[11] Li, D., Luo, H., Shi, Z.: Redundant DWT based translation invariant wavelet
feature extraction for face recognition. ICPR (2008)

[12] Libuschewski, P., Siedhoff, D., Timm, C., Gelenberg, A., Weichert, F.: Fuzzy-
enhanced, real-time capable detection of biological viruses using a portable biosen-
sor. In: Proceedings of the International Joint Conference on Biomedical Engineer-
ing Systems and Technologies (BIOSIGNALS) (2013)

[13] Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2) (1982)

[14] Ma, K., Tang, X.: Translation-invariant face feature estimation using discrete
wavelet transform. Wavelet Analysis and Its Applications pp. 200 – 210 (2001)

[15] Siedhoff, D., Fichtenberger, H., Libuschewski, P., Weichert, F., Sohler, C., Müller,
H.: Signal/background classification of time series for biological virus detection
– supplemental material. In: 36th German Conference on Pattern Recognition
(GCPR) (2014), supplied along with the Submission of this Paper.

[16] Siedhoff, D., Libuschewski, P., Weichert, F., Zybin, A., Marwedel, P., Müller,
H.: Modellierung und Optimierung eines Biosensors zur Detektion viraler Struk-
turen. In: Bildverarbeitung für die Medizin. pp. 108–113. Springer Berlin Heidelberg
(2014)

[17] Yong, Z., Youwen, L., Shixiong, X.: An improved KNN text classification algorithm
based on clustering. Journal of computers 4(3) (2009)

[18] Zybin, A., Kuritsyn, Y.A., Gurevich, E.L., Temchura, V.V., Ueberla, K., Niemax,
K.: Real-time detection of single immobilized nanoparticles by surface plasmon
resonance imaging. Plasmonics 5, 31–35 (2010)

12

	Introduction
	Translation-invariant Feature Extraction
	Features of Translation-invariant Wavelet Coefficients
	Feature Ranking and Selection

	Condensed k-NN Using Fast Coreset Clustering
	Fast Clustering with Coresets
	Training and Application of Condensed k-NN

	Results
	Performance and Parameters.
	Feature Ranking.
	Robustness to Noise.

	Discussion and Future Work

